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I. INTRODUCTION

Real Gross Domestic Product (GDP) is at the heart of macroeconomic analysis and policy-
making. It is the basis for measuring national economic development and comparing living
standards across countries, and it often serves as a reference point for other economic vari-
ables.

Measures of real GDP, however, can be quite uncertain. Lack of statistical capacity, mismea-
surement of the economy, and the existence of informal economy, among others, can all sub-
ject real GDP measures to substantial revision. This problem becomes more acute for low
and middle income countries where the data collection and compilation process is less so-
phisticated. Understanding the uncertainty of these measures and constructing more accurate
measures are therefore of great importance to assess economic performance, facilitate cross-
country comparisons, and inform policy decisions.

This paper attempts to use satellite-recorded nighttime lights to illuminate the uncertainty of
official measures of real GDP. Mostly generated by human activity, nighttime lights are visi-
ble from outer space and recorded by satellites. They have been shown to be correlated with
economic activity.1 Their global coverage and exogenous nature2 make them attractive as a
supplementary measure of real GDP and they are increasingly used in the economics liter-
ature. However, despite their economic relevance, nighttime lights may not have a straight-
forward relationship with real GDP. Meanwhile, like official measures of real GDP, they are
subject to measurement errors as well, which further complicates the estimation of the func-
tional relationship.

To illustrate such issues, Figure 1 compares satellite images of nighttime lights for mainland
China, the lower 48 states of the United States, and Africa between 1992 and 2013. While all
of them became brighter at night in 2013, China’s transformation was most visible. Variation
in nighttime lights may thus contain useful information on China’s real economic growth. In
contrast, the United States was already bright enough in 1992. The small change in the inten-
sity of lights over this period may not correspond well to economic growth, most of which
likely happened on the scientific and technological frontier rather than on infrastructure de-
velopment. While the latter was captured by satellite, the former was certainly not. Most
countries in Africa, despite their fast growth, started from low levels of income and inade-

1See, for example, Elvidge and others (1997), Ghosh and others (2010), Henderson, Storeygard, and Weil
(2012), Pinkovskiy and Sala-i Martin (2016), among others.
2The measurement errors of nighttime lights are independent of those of economic variables.
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quate access to electricity. As a result, they were still mostly dark in 2013 and the information
contained in nighttime lights may be insufficient for accurately assessing economic growth.
Figure 1 highlights that the relationship between nighttime lights and real GDP may be non-
linear, that the relative accuracy of nighttime lights to real GDP may change, and that the ex-
tent to which nighttime lights are useful as proxy for real economic activity may differ over
time and across countries.

In this paper, we address the aforementioned issues by uncovering the distribution of mea-
surement errors in both official GDP measures and nighttime lights as well as their functional
relationship simultaneously. We provide a statistical framework based on nonclassical and
nonlinear measurement error models, in which the error in official GDP per capita may de-
pend on the country’s statistical capacity and the relationship between nighttime lights and
true GDP per capita can be nonlinear and vary with geographic location. Using variation
across geographic locations and different levels of statistical capacity, we establish identifica-
tion of the distribution function of nighttime lights conditional on real GDP under fairly weak
and reasonable statistical assumptions based on recently developed results for measurement
error models.

Given our nonparametric identification results, estimates of nighttime lights’ elasticity with
respect to real GDP at different levels of income are naturally obtained. With the estimated
distributions of measurement errors, we assess the relative uncertainty of nighttime lights and
real GDP and the extent to which nighttime lights can be useful to improve real GDP mea-
sures. We then construct new real GDP measures by optimally combining official measures,
information in nighttime lights, statistical capacity and geographic location. We focus on two
new measures. One is an optimal linear combination of official data and prediction by night-
time lights, for which we provide an estimate of the optimal weight on nighttime lights for
each observation of real GDP figure. We show that this optimal linear measure performs very
well across countries. The other measure is the semiparametric conditional mean that is based
on the full conditional distribution of true GDP given all the observables.

To our best knowledge, this is the first paper to estimate the distribution of measurement er-
rors in official GDP and nighttime lights directly from data. The error distributions are cru-
cial for both understanding the uncertainty in official GDP measures and constructing more
precise measures. Intuitively, we can use nighttime lights to infer the accuracy of the official
GDP. This is because nighttime lights reflect real economic activities, and therefore, are cor-
related with the true GDP. In the meantime, nighttime lights are independent of the measure-
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Figure 1. Examples of Satellite Images of Nighttime Lights

(a) China (mainland) 1992 (b) China (mainland) 2013

(c) United States (lower 48) 1992 (d) United States (lower 48) 2013

(e) Africa 1992 (f) Africa 2013

ment error in the official GDP. After we identify how much nighttime lights a given amount
of GDP may produce, i.e., the production function of nighttime lights, we may infer the dis-
tribution of the true GDP from the observed joint distribution of nighttime lights and the of-
ficial GDP. Comparing the distribution of the true GDP with the observed distribution of the
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official GDP, we may pin down the signal-to-noise ratio of the official GDP. Therefore, we
can provide better measures of the true GDP using additional information, such as nighttime
lights.

We conduct our analysis using two nighttime lights datasets. The first one spans from 1992
to 2013 and the second from 2013 to 2017. Recorded by different satellite systems, the two
datasets are not only useful in extending the analysis of nighttime lights and real GDP to
more recent date, but they also serve a purpose of validating the robustness of our identifi-
cation and estimation strategy.

There are four main findings in this paper. First, the relationship between nighttime lights and
real GDP is nonlinear. In our baseline specification, we estimate that the elasticity of night-
time lights with respect to real GDP per capita is around 2.5 for low income countries and
close to 0 for high income countries. The elasticity steadily decreases as real GDP per capita
increases, reflecting different developing mode at different stages of economic development.
Intuitively, countries at early stages of development tend to build more infrastructure that gen-
erates lights at night, such as buildings and roads; countries at more advanced stages tend to
focus more on technological innovation, which is less associated with lights at night.

Second, we find, perhaps not surprisingly, that measurement errors in real GDP per capita
(and hence real GDP) are bigger for countries whose income is lower. There is a sharp dis-
tinction between high income countries and the rest of the countries. While high income
countries have measurement errors of real GDP concentrated at zero, low and middle in-
come countries have fat tails in the distribution of measurement errors. In other words, there
is greater uncertainty in the latter countries’ GDP measures and the measurement error can
be substantial at times. The distinction between those with high and low statistical capacity
among low and middle income countries, however, is blurred.

Third, nighttime lights are most useful for assessing and augmenting measures of real GDP
in low and middle income countries. We find that the optimal weight of our new measure of
real GDP on light-predicted GDP reaches 70% for middle income countries, but it declines
for countries at either end of the income spectrum. For countries with extremely low levels of
real GDP per capita, it is rather dark at night and as such the uncertainty in light-predicted
GDP can be quite high. In contrast, for countries with high levels of real GDP per capita,
nighttime lights are bright enough to reach the saturation level of satellite sensors and hence
may not adequately reflect variations in economic activities. More fundamentally, limited
access to electricity for low income countries and post-industrialization of high income coun-
tries are likely to disassociate their economic development from nighttime lights.
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Finally, comparing our new measures with official measures of real GDP, we find that coun-
tries disrupted by conflicts and political instability often underestimated the deterioration of
the economy during downturns and its recovery afterwards. It is likely that periods of eco-
nomic disruption made it difficult to track the economy accurately and the emergence of in-
formal economy in subsequent restoration did not enter national accounts. For example, con-
flicts might simply disrupt tax registration of firms that would otherwise have been recorded.

It should be emphasized that our new measures complement official GDP measures in gaug-
ing an economy, rather than substitute them. The construction of our new measures depends
on the very existence of official GDP measures. Nevertheless, incorporating information from
nighttime lights may provide useful insights into the size of an economy where official mea-
sures are uncertain.

The rest of the paper is organized as follows. Section II briefly reviews related literature. Sec-
tion III and Section IV describe our statistical framework and data, respectively. We present
our results in Section V. Section VI concludes. Robustness checks, including simulations and
different estimates, are discussed in Appendix B.

II. RELATED LITERATURE

This paper is closely related to several strands of literature.

First, we contribute to the growing literature on understanding economic growth through the
lens of satellite-recorded nighttime lights. Since the seminal work of Henderson, Storeygard,
and Weil (2012), nighttime lights have been increasingly used as a proxy for economic activ-
ity. For instance, Pinkovskiy and Sala-i Martin (2016) assess the relative quality of GDP per
capita and survey means by comparing them to nighttime lights; Storeygard (2016) investi-
gates the role of transport costs on the economic activity of cities proxied by nighttime lights;
Alesina, Michalopoulos, and Papaioannou (2016) use nighttime lights to study ethnic inequal-
ity; Henderson and others (2018) studies the spatial distribution of economic activity proxied
by nighttime lights. While most of the literature use nighttime lights directly as an alternative
measure of real economic activity, we show that the relationship between nighttime lights and
real GDP may differ for countries at different stages of development. Nighttime lights have
also been used for forecast of GDP levels or growth rates. One of the approaches in such fore-
cast is to use the elasticity between nighttime lights and real GDP (WORLD BANK (2017)).
Our estimates of the elasticity, which varies across countries and over time, could be useful
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for forecasting economic growth of low and middle income countries given the timeliness of
recent nighttime lights data.

From a statistical perspective, Henderson, Storeygard, and Weil (2012) and Pinkovskiy and
Sala-i Martin (2016) construct new measures of real GDP growth and real GDP per capita,
respectively, through the combination of nighttime lights and official or survey-based GDP
measures. While they obtain constant weights on nighttime lights, we take a step forward and
show that the information content on real GDP from nighttime lights differ for each observa-
tion. For each country at each point in time, our optimal linear measure uses a different opti-
mal weight on light-predicted GDP, and this can only be achieved when we uncover the entire
distribution of measurement errors in both nighttime lights and official measures of real GDP.

Second, this paper is related to the measurement error literature on identification and estima-
tion of measurement error models. Our statistical framework is based on recently developed
results for nonclassical measurement error models. Since Hu and Schennach (2008), we can
generally identify and estimate nonlinear models with nonclassical measurement errors in
a continuous variable. When there are only two continuous measurements for a continuous
latent variable as in the current paper, nonparametric identification requires additional data
information or extra restrictions. Carroll, Chen, and Hu (2010) use a secondary survey sample
to achieve nonparametric identification, which can be interpreted as identification with two
continuous measurements and two discrete instruments. Schennach and Hu (2013) impose
additivity and independence to show identification is feasible with two continuous measure-
ments only. 3 Our method relies on the latter two papers with official GDP and nighttime
lights as two continuous measurements and statistical capacity and geographic location being
two discrete instruments. For high income countries, our identification of error distributions
relies on additivity and independence assumptions.

Third, we contribute to the literature on improving the measurement of the economy from a
measurement-error perspective. Aruoba and others (2016) improves historical United States’
GDP growth at relatively high frequency and find the persistence of aggregate output dynam-
ics to be stronger than previously thought. Feng and Hu (2013) show that the official US un-
employment rate substantially underestimates the true level of unemployment. This paper
aims to improve annual real GDP estimates in a measurement error model setting for low and
middle income countries.

3See Hu (2017) for a short survey of the recent developments in this literature.
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Finally, we make a contribution to the burgeoning literature on bringing satellite data to eco-
nomic analysis. Donaldson and Storeygard (2016) provide a comprehensive review of appli-
cations of satellite data in economics. While many applications focus on converting satellite
images to physical quantities relevant for economics, such as nighttime lights, greenness, or
temperature, we focus on examining the relationship between such quantities and economic
variables of interest from an econometric perspective. Our method can be applied broadly to
a wide range of remote sensing data, as they inevitably contain measurement errors and their
relationship with economic variables of interest may not be simple and linear. One of the ben-
efits of our method is that we uncover the relationship with little information, which is often
unavailable – the lack of alternative data sources is the very reason that satellite data are being
used. Moreover, our method allows for flexible relationship between the latent true value and
the measurement error.

III. STATISTICAL FRAMEWORK

In this section, we present a statistical framework to analyze the nighttime lights data in rela-
tion to GDP. Under fairly weak assumptions, the nonlinear relationship between nighttime
lights and GDP and the distribution of measurement errors in each of them are identified.
Elasticities of nighttime lights with respect to GDP per capita are naturally obtained. We then
construct a more accurate and robust measure of GDP per capita by optimally combining na-
tional accounts data and prediction by nighttime lights.

A. Baseline Setup

Let y∗i,t denote the true real GDP per capita in logarithm for country i in year t. It is measured
as yi,t with error. Let si,t stand for the statistical capacity of country i at time t. Let zi,t denote
nighttime lights per capita in logarithm. It is related to the true real GDP per capita but also
contains measurement error. Let li stand for the latitude of the country.4

In Appendices A.1 and A.2 , we provide a set of sufficient conditions under which all the
distributions containing the latent true GDP can be nonparametrically identified by the ob-
served joint distribution of GDP and nighttime lights from countries with different statistical
capacity and at different locations. For tractability, here we provide a simple specification that

4The satellites that recorded nighttime lights are polar orbiting. As such we choose the latitude of a country’s
centroid as the variable for its geographical location.
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Figure 2. Nighttime Lights vs. GDP (1992-2017)

(a) DMSP/OLS 1992-2013 (b) Suomi-NPP/VIIRS 2013-2017

separates the functional relationship between nighttime lights and GDP per capita and the
distribution of measurement errors. We assume that the reported GDP contains an additive
measurement error, whose distribution may vary with different statistical capacity as follows:

yi,t = y∗i,t + ε
y
i,t(si,t), (1)

In the meanwhile, the nighttime lights is related with the true latent GDP through an unknown
production function m(·) and an additive error term:

zi,t = m(y∗i,t)+ ε
z
i,t(li) (2)

The distribution of this error term also varies with the geographic locations.

The specification of the production function m(·) is informed by the data. As suggested by
Figure 2, a quadratic function form is sufficient. The distributions of the error terms ε

y
i,t and

ε
z
i,t are allowed to be nonparametric. All the assumptions required for identification in Appen-

dices A.1 and A.2 are satisfied under this simple specification, as shown in Appendix A.4.

B. Sieve Maximum Likelihood Estimation

Given the general nonparametric identification, we provide a seminonparametric estimator
as suggested in Carroll, Chen, and Hu (2010). We develop our estimator based on an i.i.d
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sample, which can be extended to for time series data. We assume that there is a random
sample {zi,yi,si, li}n

i=1.

The specification of the production function m(·) is informed by the data (Figure 2) and as-
sumed to be a quadratic function. The error terms ε

y
i,t and ε

z
i,t are allowed to have a general

density function. Therefore, in this empirical study, we adopt a parametric specification of
function m(·;θ) and leave other elements nonparametrically specified in the simple specifica-
tion in equations (1) and (2). Let the true value of the unknowns be α0≡ (θ T

0 , fy∗|s,l, fεy|s, fεz|l)
T ,

where fA|B denotes the distribution of A conditional on B. We then introduce a sieve MLE es-
timator α̂ for α0, and establish the asymptotic normality of θ̂ . These results can also be ex-
tended to the case where the function m is misspecified.

In the sieve MLE estimator, we use finite dimensional parametric representations to approx-
imate the nonparametric densities in α0, where the dimension may increase with the sample
size. Let A be the parameter space. The log-joint likelihood for α ≡ (θ T , f1, f2, f3)

T ∈ A is
given by:

n

∑
i=1

log f (zi,yi,si, li) =
n

∑
i=1

`(Di;α),

in which Di = (zi,yi,si, li) and

`(Di;α) ≡ `(zi,yi,si, li;θ , f1, f2, f3)

= log{
∫

f1(y∗|si, li) f2(yi− y∗|si) f3(zi−m(y∗;θ)|li)dy∗}+ log f (si, li).

Let E[·] denote the expectation with respect to the underlying true data generating process for
Di. Then

α0 = arg sup
α∈A

E [`(Di;α)] .

We then use a sequence of finite-dimentional sieve spaces An to approximate the functional
space A . The seminonparametric sieve MLE α̂n ∈A is defined as:

α̂n = argmax
α∈An

n

∑
i=1

`(Di;α).

Under assumptions presented in Appendix A.6, we show the consistency of estimator α̂n for
α0 and the convergence rate of the nonparametric components. Furthermore, we show in Ap-
pendix A.7 that the sieve MLE θ̂n is asymptotically normally distributed around the true value
θ0. When the parametric model E[z|y∗, l] = m(y∗;θ) is misspecified, the estimator θ̂n is still
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asymptotically normally distributed, but around a pseudo true value. In fact, the estimator θ̂n

is semiparametrically efficient for θ0.

C. Constructing Better Measures of GDP

With the conditional distribution of nighttime lights and official real GDP per capita at hand,
we construct new and more accurate measures of real GDP per capita that optimally combine
the information in these two measures.

We first follow the practice in the literature and estimate the optimal linear combination of
official data and prediction by nighttime lights. With the full conditional distributions, we are
able to provide not only the optimal linear measure, but also a measure based on the semi-
parametric conditional mean. The former is a convex combination of the official GDP and the
GDP predicted by nighttime lights, and therefore, performs very robust across countries. The
latter fully makes use of the observed information, but requires more data information so that
it may not be robust in the area where observations are sparse.

1. Optimal Linear Measure

Besides the official measure of the GDP, we may also use nighttime lights to predict the GDP,
which provides a secondary measure of the GDP. Here we provide an optimal linear combina-
tion of the two measures, which is similar in spirit to Henderson, Storeygard, and Weil (2012)
and Pinkovskiy and Sala-i Martin (2016). However, there are two important differences. First,
the optimal linear combination relies on our estimates of the measurement error distributions
in both national accounts GDP data and nighttime lights. This is in contrast to the literature
where the optimal weight in the linear combination is obtained either by assumptions about
the quality of official data or through the use of auxiliary data beyond nighttime lights. Sec-
ond, our optimal weights on nighttime light-predicted GDP differ for each individual country
in each year. For each observation of the nighttime light and GDP pair, the distributions of the
measurement errors in official real GDP per capita and nighttime lights allow us to assess the
relative uncertainty of nighttime light-predicted GDP to official GDP, which then permits the
construction of an optimal weight that minimizes the conditional mean squared errors of the
linear combination.

We proceed in two steps. In the first step, we construct a measure of GDP per capita based on
nighttime lights, ŷi,t . Next, we construct the new measure of GDP per capita ŷ∗i,t by estimat-
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ing the optimal weight λi,t between nighttime lights prediction ŷi,t and national accounts data
yi,t .

Real GDP per capita predicted by nighttime lights

We regress official real GDP per capita on nighttime lights with country and year dummies,

yi,t = β zi,t +δiDc
i + γtD

y
t +ηi,t , (3)

where Dc and Dy are country and year dummies, respectively. The nighttime light-predicted
real GDP per capita is defined as

ŷi,t = β zi,t +δiDc
i + γtD

y
t . (4)

The predictive model in equation (4) assumes that controlling for country and year fixed ef-
fects, the level of real GDP per capita and nighttime lights have a stable and linear relation-
ship.

Countries may differ in their habits of using lights at night and satellites’ sensitivity to lights
may change each year. However, after taking these idiosyncrasies into account, we assume
that international experience can be relied on to predict real GDP per capita using night-
time lights. It is possible to include higher order terms of nighttime lights in the regression
equation (3) and to include interaction terms between country dummies and nighttime lights.
However, we prefer equation (3) for its simplicity and as shown later it already explains more
than 98% of variation in official real GDP per capita. Including more terms leads to overfit-
ting, making the nighttime light-predicted real GDP per capita ŷi,t very close to official mea-
sures yi,t , in which case we likely lose the useful information in nighttime lights.

Optimal linear combination

We construct a new measure ŷ∗i,t of GDP per capita based on a linear combination of night-
time light-predicted and official GDP per capita, i.e.,

ŷ∗i,t = λi,t ŷi,t +(1−λi,t)yi,t , (5)

where ŷi,t is nighttime light-predicted GDP per capita, yi,t is official GDP per capita, and λi,t

is the weight.
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To obtain the optimal linear combination, we minimize the conditional mean squared error of
our new measure, i.e.,

λi,t = argmin
λ

E
[
(ŷ∗i,t− y∗i,t)

2|zi,t ,si,t , li
]
, (6)

where y∗i,t is the true GDP. By equations (1) and (2), this conditional mean squared error can
be decomposed into two parts:

E
[
(ŷ∗i,t− y∗i,t)

2|zi,t ,si,t , li
]

= λ
2E
[(

ŷi,t− y∗i,t
)2 |zi,t ,si,t , li

]
+(1−λ )2E

[
(εy)2 |si,t

]
. (7)

The first term in equation (7) captures the uncertainty in nighttime light-predicted GDP per
capita,5 whereas the second term captures the uncertainty in official GDP per capita.

The optimal weight then depends on the relative uncertainty in these two measures of GDP
per capita and equals,

λi,t =
E
[
(εy)2 |si,t

]
E
[(

ŷi,t− y∗i,t
)2
|zi,t ,si,t , li

]
+E

[
(εy)2 |si,t

] . (8)

Nighttime lights help provide the optimal weight λi,t because they reflect real economic ac-
tivities, and therefore, are correlated with the true GDP. In the meantime, nighttime lights
are independent of the measurement error in the official GDP. After we identify the distribu-
tion of nighttime lights conditional on the true GDP and the distribution of the true GDP, we
may infer the uncertainty in nighttime light-predicted GDP and the uncertainty in the official
GDP. We may then pin down the optimal weight in the linear combination of the nighttime
light-predicted GDP and the official GDP. Notice that λi,t is always in [0,1], which makes the
optimal linear measure very robust across countries and years.

2. Semiparametric Conditional Mean

Given that we have identified the distribution of the true GDP joint with all the observables in
the semiparametric specification, a natural measure of the true GDP is the conditional mean

5Note that

E
[(

ŷi,t − y∗i,t
)2 |zi,t ,si,t , li

]
=

∫ (
ŷ(zi,t)− y∗i,t

)2
fεz(zi,t −m(y∗)) f (y∗|si,t , li)dy∗∫

fεz(zi,t −m(y∗)) f (y∗|si,t , li)dy∗

is a function of zi,t . And we treat the country and year dummies as exogenous variables given (zi,t ,si,t , li).
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of the distribution, i.e., E[y∗i,t |yi,t ,zi,t ,si,t , li]. Notice that the conditional mean may also be
considered as a minimizer of the mean squared error conditional on all the observables, par-
ticularly including yi,t , which makes it different from the previous optimal linear measure.
Under our nonparametric identification and semiparametric specification, it follows that

E[y∗i,t |yi,t ,zi,t ,si,t , li] =
∫

y∗ f (y∗|si,t , li) f (yi,t− y∗|si,t) f (zi,t−m(y∗;θ)|li)dy∗∫
f (y∗|si,t , li) f (yi,t− y∗|si,t) f (zi,t−m(y∗;θ)|li)dy∗

.

Compared to the optimal linear measure, while the optimal measure E[y∗i,t |yi,t ,zi,t ,si,t , li] has
the clear advantage of making full use of the information in the conditional distributions.
However, its nonparametric feature makes it less robust than the previous optimal linear mea-
sure because the semiparametric measure requires a large sample size to perform well. Es-
pecially in the sparse area of the empirical distribution of (yi,t ,zi,t ,si,t , li), the semiparametric
conditional mean can be volatile, while the optimal linear measure remains robust. In the area
where the density f (y∗i,t |yi,t ,zi,t ,si,t , li) takes a relatively larger value, the conditional mean
is actually stable and also close to the optimal linear measure. For this reason, we make the
optimal linear measure our choice of new measure for the true GDP.

IV. DATA

A. Nighttime Lights

The U.S. Air Force Defense Meteorological Satellite Program (DMSP) Operational Lines-
can System (OLS) has been collecting global low light imaging data since the 1970s. The
National Oceanic and Atmospheric Administration (NOAA) processes the data and hosts a
digital archive from 1992 to 2013.6 DMSP satellites overpass at local time in the 7pm to 9pm
range,7 and nighttime lights are a class of derived products of the low light imaging data in
spectral bands where electric lights emissions are observed. NOAA provides cloud-free com-
posites of nighttime lights based on a set of quality criteria that remove observations affected
by sunlight, moonlight, glare, aurora, and the edges of the DMSP/OLS swaths.8 For some
years, there were two satellites collecting data and two composites were produced. In those
cases, we use the average of the two composites. Figure 3 is an example of the DMSP/OLS

6 The lights data can be downloaded here: http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html.
7See Elvidge and others (2009) for an overview.
8A detailed description of the selection criteria can be found here: https://www.ngdc.noaa.gov/eog/gcv4_

readme.txt.

http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
https://www.ngdc.noaa.gov/eog/gcv4_readme.txt
https://www.ngdc.noaa.gov/eog/gcv4_readme.txt
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nighttime lights image in 2010. Each pixel of the DMSP/OLS nighttime lights images is a 30
arc-second grid (a bit less than 1 square kilometer). It is associated with a numerical value of
radiance from 0 to 63 that is increasing with brightness.

Figure 3. Map of Nighttime Lights in 2010

Since 2013, nighttime lights data are produced monthly by the Visible Infrared Imaging Ra-
diometer Suite (VIIRS) onboard a different satellite (Suomi-NPP).9 VIIRS nighttime lights
have a number of advantages compared to DMSP/OLS, including greater radiometric ac-
curacy, finer geographical resolution, etc., though the satellite’s overpass time is after mid-
night, when outdoor lights are arguably less related to residential economic activity than
DMSP/OLS nighttime lights. NOOA have yet to process annual nighttime lights data. We
therefore take the 12-month average of monthly data as annual data and use them for analysis.

B. Administrative Maps and Country Location

The Database of Global Administrative Areas (known as GADM) provides administrative
shape files for all countries in the world. For each country in each year, we clip the nighttime

9VIIRS nighttime lights data can be downloaded here: https://www.ngdc.noaa.gov/eog/viirs/download_dnb_
composites_iframe.html.

https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites_iframe.html
https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites_iframe.html
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lights map down to their country borders and sum up the numerical value of radiances of all
pixels within their borders. As such we obtain a country-year nighttime lights panel.

To obtain a country’s latitude, we calculate the centroid of its largest contiguous block. For
instance, the United States has a few separate bodies of landmass, such as Alaska, Hawaii,
and the lower 48 states. We use the centroid of the lower 48 states as the location of the United
States. Appendix C.2 provides an illustration.

For estimation purpose, we discretize country locations into binary values based on whether
their centroid’s latitude is between the Northern and Southern Tropic or outside. Countries
between the tropics generally receive more sunshine than those outside, which might affect
the background light in the nighttime lights maps.10 Though NOOA has gone to great lengths
to remove background noises, there might still remain measurement errors related to coun-
try locations. Our classification also takes into account the number of countries in each geo-
graphical subarea. For example, an alternative classification is to group countries by Northern
and Southern Hemisphere, but the Souther Hemisphere contains much less countries.

C. GDP, Population, and Statistical Capacity

We obtain GDP per capita (PPP, constant 2011 international dollars) and population data from
the World Bank. To calculate night light intensity, which we define as (log) total nighttime
lights per capita, we divide the radiance sum of lights by population within each country in
any given year and use the logarithms. The World Bank also provides statistical capacity rat-
ings for low and middle income countries. Though the ratings change over time, the change
is small for most countries. For this reason we group countries into three categories: high
income countries, those below the median of statistical capacity rating among the low and
middle income countries and those above.

In total we have an unbalanced panel of 182 countries and 3870 observations based on DMSP/OLS
nighttime lights data. The majority of countries have data spanning from 1992 to 2013. A
similar panel is constructed for Suomi/NPP VIIRS nighttime lights data, where there are 184
countries and 920 observations. The discrepancy between the number of countries in the two
datasets arises from the availability of statistical capacity ratings.11 Table 1 and 2 presents the

10In addition, the sun sets later in the summer for countries closer to the arctic circle. For the VIIRS data set, the
nighttime light readings are zero for Nordic countries during the summer months. While we use the annual aver-
age where such issues are less concerning, differentiating measurement errors for countries at different locations
can nevertheless be helpful.
11The two countries are Barbados and the Czech Republic.
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summary statistics based on nighttime lights data from DMSP/OLS and VIIRS, respectively.
As can be seen from the table, richer countries tend to be brighter at night.

Table 1. Summary Statistics (DMSP/OLS)

Location Statistical Capacity Night lights per 1000 people real GDP per capita # of countries # of obs

Between Tropics Low 66 9490 12 228
Between Tropics High 58 9680 36 786
Between Tropics (High income) 186 40214 34 729
Outside Tropics Low 17 5311 57 1192
Outside Tropics High 21 6614 37 812
Outside Tropics (High income) 78 62074 6 123

Total - 63 15097 182 3870

Table 2. Summary Statistics (VIIRS)

Location Statistical Capacity Night lights per 1000 people real GDP per capita # of countries # of obs

Between Tropics Low 101 9250 10 50
Between Tropics High 63 12074 30 150
Between Tropics (High income) 172 40720 45 225
Outside Tropics Low 28 5169 51 255
Outside Tropics High 24 8881 35 175
Outside Tropics (High income) 81 46064 13 65

Total - 76 18807 184 920

As mentioned in Section III.B, the nonparametric densities in the sieve MLE estimator are
approximated by finite dimensional parametric representations, where the dimension depends
on the sample size. We find that Hermite orthogonal polynomials work well as basis functions
with just a few sieve terms.12 Given the sample size of our data sets, we conduct simulation
studies in Appendix B to choose the smoothing parameters in our sieve MLE estimator. With
a sample size similar to the DMSP/OLS sample, our simulation studies show that the esti-
mates are stable with the number of sieve terms used for each density function being around
6. As such we choose 6 for the DMSP/OLS sample. The VIIRS sample has much fewer ob-
servations and we reduce the number of sieve terms to 4.
12Compared to Hermite polynomials, the drawback for using Legendre polynomials is that they have bounded
support and Fourier series require many more sieve terms to approximate density functions well.
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V. RESULTS

A. Nighttime Lights’ Elasticity of Real GDP per capita

Table 3 displays the estimated quadratic nighttime light production function for DMSP/OLS
data. The estimates are quite precise with each parameter statistically significant at the 0.05
level. Notably, the parameter estimate on the quadratic term is non-zero, indicating that night-
time lights’ elasticity of real GDP per capita is not constant. Table 4 presents the results for
VIIRS data. The estimates are much less precise due to the limited number of observations
and a linear production function seems adequate. The two production functions are expected
to be different because the overpass time of the two satellite systems differs.

Table 3. Estimated Light Production Function (DMSP/OLS)

m(y∗) = θ0 +θ1y∗+θ2(y∗)2

Parameter θ0 θ1 θ2

Point Estimate 0.398 1.234 -0.244
Standard Error (0.176) (0.139) (0.049)

Data are re-centered at zero. Standard errors are based on 400 sample
bootstraps.

Table 4. Estimated Light Production Function (VIIRS)

m(y∗) = θ0 +θ1y∗+θ2(y∗)2

Parameter θ0 θ1 θ2

Point Estimate 0.225 0.964 -0.019
Standard Error (0.170) (0.248) (0.157)

Data are re-centered at zero. Standard errors are based on 400 sample
bootstraps.

Figure 4 presents the estimation results graphically. Graph (a) superimposes the estimated
light production function on the raw DMSP/OLS data. It can be seen that the quadratic func-
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Figure 4. Estimation Results with Quadratic Light Production Function

(a) Light Production Function (DMSP/OLS) (b) Light Production Function (VIIRS)

tion form broadly captures the relationship in the data.13 Nighttime lights’ elasticity with re-
spect to real GDP per capita, which is the slope of the production function, steadily decreases
as real GDP per capita increases, reflecting that a country moves away from infrastructure de-
velopment toward technical progress as it develops. Low income countries have an estimated
elasticity about of 2.5 whereas high income countries have an elasticity close to 0.

Graph (b) display the results based on VIIRS data. The estimated elasticity is close to 1 for all
countries. Interestingly, the elasticities based on VIIRS data are on average smaller than those
based on DMSP/OLS data, which is consistent with the overpass time of the two satellite sys-
tems. DMSP/OLS satellites’ local overpass time was between 7pm and 9pm, whereas that of
VIIRS is after midnight. Intuitively, nighttime lights between 7-9 pm have more to do with
real economic activities than those after midnight.

B. Uncertainty in Real GDP per capita

Figure 5 compares the probability density function of measurement errors of real GDP per
capita for high income countries and the rest of the countries with relatively high and low
statistical capacity. There is a sharp distinction between high income countries and the rest,

13One caveat here is that when plotting the raw data, we use official GDP per capita, which contain measure-
ment error, whereas when plotting the light production function, the horizontal grids should be interpreted as
true GDP per capita.
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Figure 5. Distribution of Measurement Errors of Real GDP per capita

(a) DMSP/OLS (b) VIIRS

whereas the distinction between those with high and low statistical capacity among low and
middle income countries is not clear-cut.

The measurement errors of high income countries’ real GDP per capita are concentrated at
zero, indicating relatively high precision in official figures. In contrast, low and middle in-
come countries’ distribution of measurement errors have fat tails, which suggests that mea-
surement errors are generally of bigger size. Among low and middle income countries, both
data sets suggest that those with high statistical capacity tend to have similar measurement
errors to those with low statistical capacity.

C. New Measures of Real GDP per capita

We focus on the optimal linear measure of real GDP per capita based on equation (5), where
we need nighttime light-predicted real GDP per capita as well as the optimal weights to com-
bine official figures and prediction by nighttime lights.

Table 5 presents results from regressions of official real GDP per capita on nighttime lights
and a set of dummies based on DMSP/OLS nighttime lights data. Column (1) is our baseline
specification in equation (3). With R square above 0.98, nighttime lights are highly correlated
with real economic activity. For the purpose of comparison, we include a quadratic term in
column (2). Though the coefficient on the quadratic term is statistically significant, there is
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little improvement in R square. In column (3), we further include interaction terms of night-
time lights and countries dummies.

We use prediction by nighttime lights based on column (1). As mentioned before, we want to
retain information in nighttime lights and predict real GDP per capita based on cross-country
relationship between nighttime lights and real economic activity. While column (2) adds little
predictive power by including higher order terms of nighttime lights, column (3) uses within-
country variation to predict real GDP per capita, which partly defeats the purpose of relying
on cross-country comparisons to estimate real economic activity. In cases where official real
GDP per capita is systematically mis-measured, predictions by column (3) will be biased ac-
cordingly.

Table 5. Official Real GDP per capita and Nighttime Lights 1992-2013

Dependent Variable: (log) Real GDP per capita

(1) (2) (3)

(log) Nighttime Lights per capita 0.218∗∗∗ 0.265∗∗∗ 0.373∗∗∗

(0.013) (0.031) (0.110)
(log) Nighttime Lights per capita squared 0.005∗

(0.003)
country fixed effect X X X
year fixed effect X X X
(log) Nighttime Lights per capita × country dummies X
adj. R2 0.981 0.981 0.986
N 3,870 3,870 3,870

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The optimal weights are calculated according to equation (8). Figure 6 contrast the optimal
weights against real GDP per capita based on DMSP/OLS data.14 There is broadly a bell-
shaped pattern. Countries with very low or high income tend to have small weights on predic-
tion by nighttime lights, whereas countries in the middle of the income spectrum have com-
paratively high weights.

The optimal weight makes use of the relative accuracy of nighttime light-predicted GDP
and official GDP figures. Intuitively, for countries with extremely low levels of real GDP per

14Optimal weights based on VIIRS data display a similar pattern.
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Figure 6. Optimal Weights and Real GDP per capita: DMSP/OLS 1992-2013

capita, it is rather dark at night and as such the uncertainty in nighttime light-predicted GDP
can be quite high. For example, night light intensity for Malawi is almost zero as a result of
paltry access to electricity in the country. Our optimal weights on nighttime light-predicted
GDP are below 0.05 for Malawi. In contrast, for countries with high levels of real GDP per
capita, nighttime lights are bright enough to reach the saturation level of satellite sensors and
hence may not adequately reflect variations in economic activity. More fundamentally, post-
industrialization of high income countries is likely to disassociate their economic develop-
ment from nighttime lights. Meanwhile, high income countries tend to have the most accurate
national accounts data. Thus it is not surprising that we find almost zero weights for high in-
come countries such as the United States.

Nighttime lights can play a big role in improving real GDP per capita measures for the ma-
jority of middle and low income countries. Figure 6 shows that for fragile states like Sierra
Leone, emerging markets such as China, Brazil, Indonesia, and Pakistan, our optimal weights
on nighttime light-predicted GDP range from 0.2 to 0.6.
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It is also useful to examine the absolute accuracy of the two measures. To this end, Table 6
compares the mean squared error of regression (3) of countries with different World Bank in-
come status. The mean squared error of light-predicted GDP per capita for low income coun-
tries is almost twice as it is for high income countries, and this is not driven by the number of
observations. In other words, there is greater discrepancy between light-predicted GDP per
capita and official figures for low income countries.

Table 6. Optimal Weights and Mean Squared Error by Income Status

World Bank
Country Classification

Low
Income

Lower Middle
Income

Upper Middle
Income

High Income

λ 0.24 0.34 0.28 0.01
Mean squared error 0.02 0.02 0.07 0.01

# observations 1212 1121 673 852

D. Official vs. New Measures

Comparing official measures of real GDP per capita to our new measures for every country in
our data sets, we find that countries disrupted by conflicts and political instability often under-
estimated the deterioration of the economy during downturns and its recovery afterwards. For
example, Figure 7 contrasts the optimal linear measure against official measure for the Demo-
cratic Republic of the Congo, Djibouti, Kenya, and Sierra Leone, respectively. The Demo-
cratic Republic of the Congo was in a state of conflict until 2001 when UN peacekeepers ar-
rived. When its economic situation deteriorated between 1992-2001, panel (a) shows that the
new measures of GDP per capita were worse than official figures suggested; to the contrary,
when the economic situation improved afterwards, the new measures suggested higher living
standards. Similarly, panel (b) shows that during the 1990s when armed conflicts routed the
economy in Djibouti, the new measure suggested worse situation than official figures; when
the economy recovered, the new measures suggested higher GDP per capita. Kenya’s econ-
omy was afflicted by political instability before 2002 and Sierra Leone by its civil war in the
1990s. Graphs (c) and (d) again display a similar pattern of overestimation of real GDP per
capita in the economic downturn and underestimation in the upturn. It is likely that periods of
economic disruption made it difficult to track the economy accurately and the emergence of
informal economy in subsequent restoration did not enter national accounts.
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Figure 7. Real GDP per capita: Economic Disruption and Restoration

(a) Dem. Rep. of Congo (b) Djibouti

(c) Kenya (d) Sierra Leone

Appendix B.4 presents the official measures of real GDP per capita and our optimal linear
measures for a number of other countries.

Relation to Informal Economy

There is a large literature documenting that the size of the informal economy is large and that
much of it is related to agriculture (see, for example, La Porta and Shleifer (2014) and Med-
ina and Schneider (2018)). A natural question that arises is the extent to which the discrep-
ancy between the new measures and official data is driven by the existence of the informal
economy.

The optimal linear measure, by construction through equations (4) and (5), implies that the
discrepancy between the new and official measures should be zero on average over a long pe-
riod of time. As such the discrepancy does not reflect the absolute size of the informal econ-
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omy, but rather could be related to the changing size of the informal economy. To see this, we
focus on low and middle income countries and use the agricultural share of the economy15

as a proxy for the informal economy. Figure 8 contrasts the discrepancy between the new
and official measures of real GDP per capita against the deviation of a country’s agricultural
share from its long-run average. Each blue dot represents a country-year observation. There is
clearly a positive relationship. In years where the agricultural share of a country is above its
own average, the discrepancy between the two GDP measures tends to increase. However, the
correlation is only 0.20, suggesting that there are more dimensions than the informal econ-
omy that drive the discrepancy. We leave the precise mechanisms that drive such discrepancy
for future research.

Figure 8. New Measures and the Informal Economy: 1992-2013

In this paper, we show that nighttime lights can be a useful source of information to improve
official real GDP data. To begin with, they can be used to detect the uncertainty in official
data and potential mismeasurement of real GDP. Systematic differences between the new and
official measures may warrant further investigation as to what contributes to such differences.
15Data are from the World Bank.
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While nighttime lights can be computationally intensive to process, the method developed in
this paper is not limited to nighttime lights. In fact, measures of real GDP that are condition-
ally independent of official data can be used in a similar fashion.

Several caveats are in order. First, undoubtedly, countries differ in their social norms and
habits of using lights at night. To the extent that these country-specific factors are time-invariant,
such difference is taken into account in our optimal linear measure through country fixed
effects. However, to the extent that countries have undergone structural transformation in a
way that is dissimilar to other countries, our new measures may not adequately capture such
changes. Second, our model assumes that measurement errors in nighttime lights depend on
the latitude of a country’s centroid. For countries with a large geographical coverage, this as-
sumption may be strong. As such we view our new measures as more useful and relevant for
countries with an average size. Third, while nighttime lights has the benefits of being inde-
pendent of GDP measurement errors, its relationship with GDP may not be always the same,
especially given increasing global awareness of energy conservation and climate change. Our
new measures provide new perspectives on understanding economic growth and augmenting
official statistics in gauging the economy. Understanding the relationship between nighttime
lights and the structure of the economy and utilizing alternative measures to further improve
measurements of GDP would be next steps of our future research.

VI. CONCLUSION

In this paper, we first provide a statistical framework to describe the relationship among night-
time lights, official GDP, and true GDP. We make use of the variation of observed nighttime
lights and official GDP across different statistical capacity and geographic location, and pro-
vide sufficient conditions under which the joint distribution of observables and the latent true
GDP is uniquely determined by the distribution of observables. The paper proposes a semi-
nonparametric Sieve MLE and constructs new measures of real GDP per capita and real GDP
growth based on estimated distributions. We find that official real GDP per capita measures
are less precise for low income countries and nighttime lights can play a bigger role in im-
proving such measures. Comparing our new measures with official measures of real GDP,
we find that countries disrupted by conflicts and political instability often underestimated the
deterioration of the economy during downturns and its recovery afterwards. We expect our
statistical framework and methodology will have a broad impact on measuring GDP using
additional information.
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APPENDIX A. MATHEMATICAL PROOFS

A.1. Assumptions

Let f (·|·) is a generic conditional probability density function. We make the following as-
sumptions.

Assumption 1.
f (zi,t |y∗i,t ,yi,t ,si,t , li) = f (zi,t |y∗i,t , li). (9)

This assumption implies that the nighttime lights recorded by satellite are related to the true
real GDP per capita and the geographic location of a country, but have nothing to do with
how its GDP is measured or its statistical capacity.

Assumption 2.
f (yi,t |y∗i,t ,si,t , li) = f (yi,t |y∗i,t ,si,t). (10)

The statistical capacity captures how accurate GDP is measured regardless of the location of
the country.

Under these assumptions above, the joint probability density of nighttime lights per capita,
official measures of real GDP per capita, statistical capacity, and location follows:

f (zi,t ,yi,t ,si,t , li) =
∫

f (zi,t |y∗i,t , li) f (yi,t |y∗i,t ,si,t) f (y∗i,t ,si,t , li)dy∗i,t

The identification results in Carroll, Chen, and Hu (2010) imply that f (zi,t |y∗i,t , li), f (yi,t |y∗i,t ,si,t),
and f (y∗i,t ,si,t , li) are uniquely determined by f (zi,t ,yi,t ,si,t , li). In other words, the conditional
distributions of nighttime lights and official measures of real GDP per capita are identified.
The identification relies on reasonable assumptions, which are discussed below. For middle
and low income countries, whose measurement error issue is more significant, our results
don’t require additivity of measurement errors, nor direct independence between true GDP
per capita and its measurement error.

A.2. Nonparametric Identification

We assume the existence of a random sample from distribution f (zi,t ,yi,t ,si,t , li) for coun-
try i in year t. We provide sufficient conditions for the identification of latent distributions:
f (zi,t |y∗i,t , li), f (yi,t |y∗i,t ,si,t), and f (y∗i,t ,si,t , li) from the observed distribution f (zi,t ,yi,t ,si,t , li).
In this subsection, we omit the subscript (i, t) for the simplicity of notations.

Suppose the supports of z,y,y∗,s, and l are Z ⊆ R, Y ⊆ R, Y ∗ ⊆ R, S = {s1,s2, ...,sJ} with
J ≥ 2, and L = {l1, l2, ..., lK} with K ≥ 2, respectively. We assume
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Assumption 3. f (z,y,y∗,s, l) is positive, bounded on its support Z ×Y ×Y ∗×S ×L , and
is continuous in (z,y,y∗) ∈Z ×Y ×Y ∗.

Assumption 4. (i) for each given s,
∫

f (y|y∗,s)h(y∗)dy∗ = 0 for all y ∈ Y for all bounded
function h implies that h ≡ 0 over Y ∗; (ii) for each given (s, l),

∫
f (z,y|s, l))h(y)dy = 0, i.e.,

E[h(y)|z,s, l] = 0, for all z ∈Z for all bounded function h implies that h≡ 0 over Y ;

Assumption 4 (i) is the bounded completeness of the conditional density f (y∗|y); see, e.g.,
Mattner (1993). Assumption 4(ii) is imposed on observables directly and is directly testable
under some restrictions (Freyberger (2017)). Nevertheless, comparing with conditions for
parametric identification, Assumption 4 is a high level condition mainly because we are achiev-
ing a nonparametric identification result.

Define

κ
jk (y∗)≡

f
(
y∗|sa, l j

)
f (y∗|sb, lk)

f
(
y∗|sb, l j

)
f (y∗|sa, lk)

for y∗ ∈ Y ∗. (11)

Assumption 5. For any y∗1 6= y∗2, there exist j,k ∈ {1,2, ...,K}, such that κ jk (y∗1) 6= κ jk (y∗2)
and supy∗∈Y ∗ κ jk (y∗)< ∞.

This assumption requires that the distribution of real GDP varies with countries’ statistical ca-
pacity and geographic location, which is quite reasonable. In the data, we observe that higher
income countries have more effective statistical institutions. In the meantime, it is well known
that the GDP is highly correlated with countries’ geographic location. Appendix C.2 provides
more details on the data that underpin this assumption.

Since y∗ is not observed, we need a normalization assumption as follows:

Assumption 6. One of the followings holds for all y∗ ∈Y ∗: for some s j, (i) (mean) E[y|y∗,s j] =

y∗; or (ii) (mode) argmax
y

f
(
y|y∗,s j

)
= y∗; or (iii) (median) inf{v :

∫ v
−∞

f (y|y∗)dy≥ 0.5}= y∗.

Assumption 6 says that the reported GDP from some country with statistical capacity s j is
targeted for the true y∗. Specifically, either the mean, mode or median of the distribution of y
given y∗ and s j is equal to y∗. This condition is not required for other countries with different
statistical capacity.

We summarize the nonparametric identification result as follows:

Theorem 1. Suppose Assumptions 1–6 hold. Then, the distribution function f (z,y,s, l) uniquely
determines the joint distribution function f (z,y,y∗,s, l) satisfying

f (z,y,y∗,s, l) = f (z|y∗, l) f (y|y∗,s) f (y∗,s, l). (12)
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Proof: See Appendix A.3.

This theorem presents a set of sufficient conditions under which all the distributions contain-
ing the latent true GDP can be uniquely determined by the observed joint distribution of GDP
and nighttime lights from countries with different statistical capacity and at different loca-
tions. Such a nonparametric identification result implies that consistent estimation is possible
for parametric, semiparametric, or nonparametric specifications. In order to focus on the rela-
tionship between the nighttime lights and the latent true GDP and also to take the sample size
into account, we adopt a simple specification to simplify the measurement error structure.

A.3. Proofs

We define the integral operator Ly|y∗,sa : L 2(Y ∗)→L 2(Y ) as:

{Ly|y∗,sah}(y) =
∫

Y ∗

fy|y∗,s (y|y∗,sa)h(y∗)dy∗ for any h ∈L 2 (Y ∗) , y ∈ Y .

where L 2(Y ) denotes the space of functions with
∫
Y |h(y)|2dy < ∞. Similarly, we define

Ly,z|sa,l j : L 2 (Z )→L 2 (Y ) ,
(

Ly,z|sa,l jh
)
(y) =

∫
fy,z|s,l(y,z|sa, l j)h(z)dz,

Lz|y∗,l j : L 2 (Z )→L 2 (Y ∗) ,
(

Lz|y∗,l jh
)
(y∗) =

∫
fz|y∗,l(z|y∗, l j)h(z)dz,

Dy∗|sa,l j : L 2 (Y ∗)→L 2 (Y ∗) ,
(

Dy∗|sa,l jh
)
(y∗) = fy∗|s,l(y

∗,sa, l j)h(y∗) .

Notice that the operator Dy∗|sa,l j is diagonal or multiplication operator, and the operator Ly,z|sa,l j

is observed from the data.

Proof of Theorem 1: For each value (s, l), assumptions 1 and 2 imply that

fy,z|s,l(y,z|sa, l j) =
∫

fy|y∗,s (y|y∗,sa) fz|y∗,l(z|y∗, l j) fy∗|s,l(y
∗,sa, l j)dy∗, (13)

fy,z|s,l(y,z|sb, l j) =
∫

fy|y∗,s (y|y∗,sb) fz|y∗,l(z|y∗, l j) fy∗|s,l(y
∗,sb, l j)dy∗. (14)
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By equation (13) and the definition of the operators, we have, for any function h ∈L 2 (Z ),(
Ly,z|sa,l jh

)
(y) =

∫
fy,z|s,l(y,z|sa, l j)h(z)dz

=
∫ (∫

fy|y∗,s (y|y∗,sa) fz|y∗,l(z|y∗, l j) fy∗|s,l(y
∗,sa, l j)dy∗

)
h(z)dz

=
∫

fy|y∗,s (y|y∗,sa) fy∗|s,l(y
∗,sa, l j)

(∫
fz|y∗,l(z|y∗, l j)h(z)dz

)
dy∗

=
∫

fy|y∗,s (y|y∗,sa) fy∗|s,l(y
∗,sa, l j)

(
Lz|y∗,l jh

)
(y∗)dy∗

=
∫

fy|y∗,s (y|y∗,sa)
(

Dy∗|sa,l jLz|y∗,l jh
)
(y∗)dy∗

=
(

Ly|y∗,saDy∗|sa,l jLz|y∗,l jh
)
(y) .

This means we have the operator equivalence

Ly,z|sa,l j = Ly|y∗,saDy∗|sa,l jLz|y∗,l j . (15)

Similarly, we have,
Ly,z|sb,l j = Ly|y∗,sb

Dy∗|sb,l jLz|y∗,l j . (16)

Note that the left-hand sides of equations (15) and (16) are observed.

Assumption 4 imply that all the operators involved in equations (15) and (16) are invertible.
Hence

Ly,z|sa,l jL
−1
y,z|sb,l j

= Ly|y∗,saDy∗|sa,l jD
−1
y∗|sb,l j

L−1
y|y∗,sb

. (17)

This equation holds for all s j and sk so that we may then eliminate Ly|y∗,sb
to have

L jk
y,y ≡ (Ly,z|sa,l jL

−1
y,z|sb,l j

)(Ly,z|sa,lkL−1
y,z|sb,lk

)−1 = Ly|y∗,saD jk
y∗L
−1
y|y∗,sa

, (18)

where D jk
y∗ : L 2(Y ∗)→L 2(Y ∗) is still a diagonal operator

D jk
y∗ ≡ Dy∗|sa,l jD

−1
y∗|sb,l j

(Dy∗|sa,lkD−1
y∗|sb,lk

)−1. (19)

In fact, this diagonal operator can be defined as (D jk
y∗h)(y

∗) ≡ κ jk(y∗)h(y∗) with κ jk de-

fined in equation (11). Equation (18) implies a diagonalization of an observed operator L jk
y,y,

where an eigenvalue of L jk
y,y equals κ jk(y∗) for a value of y∗ with corresponding eigenfunc-

tion fy|y∗,s (·|y∗,sa). Notice that each eigenfunction is a conditional density, and therefore, is
automatically normalized.

Equation (18) implies that the operator L jk
y,y has the same spectrum as the diagonal opera-

tor D jk
y∗ . Since an operator is bounded by the largest element of its spectrum, Assumption 4

guarantees that the operator L jk
y,y is bounded with distinctive eigenvalues. Following theorem
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XV.4.3.5 in Dunford and Schwartz (1971), we have that the diagonal decomposition of L jk
y,y

is unique up to the index of eigenvalues and eigenfunctions. Notice that Assumption 4 guar-
antees that, for any two different eigenfunctions fy|y∗,s (·|y∗1,sa) and fy|y∗,s (·|y∗2,sa) , one can
always find two subsets with l j and lk such that the two different eigenfunctions correspond to
two different eigenvalues κ jk (y∗1) and κ jk (y∗2) and, therefore, are uniquely determined.

In order to fully identify each eigenfunction, we need to identify the exact value of y∗ in
each eigenfunction fy|y∗,s (·|y∗,sa). Here we use the ordering assumption in Hu and Schen-
nach (2008), i.e. Assumption 6, to pin down the the exact value of y∗ for each eigenfunction
fy|y∗,s (·|y∗,sa). Such an identification procedure can be applied to each subpopulation with a
different value of s. Thus, we have fully identified the conditional density fy|y∗,s.

Given fy|y∗,s, other densities containing y∗ can also be identified due to the injectivitiy of oper-
ator Ly|y∗,s as follows:

fz,y∗,s,l = L−1
y|y∗,s fz,y,s,l (20)

In summary, we have shown that the density f (z,y,s, l) uniquely determines the joint density
f (z,y,y∗,s, l) satisfying f (z,y,y∗,s, l) = f (y|y∗,s) f (z,y∗,s, l).

A.4. Identification of the Simple Specification

Assumptions 1 and 2 are satisfied when the two error terms ε
y
i,t and ε

z
i,t are independent of

each other and the latent true GDP. Assumption 3 holds when the distributions of the error
terms and the latent true GDP are bounded and continuous and the function m is bounded and
continuous. Assumption 4 is a high-level condition. Part (i) requires that the characteristic
function of the error term ε

y
i,t does not varnish on the real line. Assumption 5 requires that

the distribution of latent true GDP varies with statistical capacity and location. Assumption 6
requires that for some category fo the statistical capacity the error term ε

y
i,t has a zero mean, a

zero mode, or a zero median.

Ideally, we should observe the statistical capacity si,t for all the countries. The world bank,
however, only provides this measure for middle and low income countries. Therefore, we as-
sign an additional category for the discretized statistical capacity to represent the high income
group. Since this assigned category coincides with the high income group, the support of the
true GDP conditional on this category is different from the support of true GDP conditional
on different statistical capacity and location in the middle or low income group. That means
the assigned category can’t serve as j and k in Assumption 5.

In addition, identification of the error distribution corresponding to this assigned category has
to rely on this simple specification above. We use Theorem 1 in Schennach and Hu (2013) to
show that the distributions of y∗, εy, and εz, and function m(.) are identified under assump-
tions as follows: i) the errors εy and εz are mutually independent with a zero mean and also
jointly independent of y∗; ii) the characteristic functions of y and z do not vanish on the real
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line; and iii) function m(·) is monotone and continuously differentiable, and does not belong
to a particular parametric family, which includes linear functions. Given that these assump-
tions are relatively mild comparing with those in the existing literature, we adopt this simple
specification instead of imputing the statistical capacity for the high income counties.

A.5. Sieve Maximum Likelihood Estimation

Given the general nonparametric identification, we provide a seminonparametric estimator
as suggested in Carroll, Chen, and Hu (2010). We develop our estimator based on an i.i.d
sample, which can be extended to for time series data. We assume that there is a random
sample {zi,yi,si, li}n

i=1.

We adopt a parametric specification of function m(·;θ) and leave other elements nonpara-
metrically specified in the simple specification in equations (1) and (2). Let the true value of
the unknowns be α0 ≡ (θ T

0 , f01, f02, f03)
T ≡ (θ T

0 , fy∗|s,l, fεy|s, fεz|l)
T , where fA|B denotes the

distribution of A conditional on B. We then introduce a sieve MLE estimator α̂ for α0, and
establish the asymptotic normality of θ̂ . These results can also be extended to the case where
the function m is misspecified.

Following Carroll, Chen, and Hu (2010), we consider the widely used Hölder space of func-
tions. Let ξ = (ξ1,ξ2,ξ3)

T ∈ R3, a = (a1,a2,a3)
T , and ∇ah(ξ ) ≡ ∂

a1+a2+a3 h(ξ1,ξ2,ξ3)

∂ξ
a1
1 ∂ξ

a2
2 ∂ξ

a3
3

denote

the (a1 +a2 +a3)
th derivative. Let ‖·‖E denote the Euclidean norm. Let V ⊆ R3 and γ be the

largest integer satisfying γ > γ . The Hölder space Λγ(V ) of order γ > 0 is a space of func-
tions h : V 7→ R, such that the first γ derivatives are continuous and bounded, and the γ th

derivative is Hölder continuous with the exponent γ − γ ∈ (0,1]. We define a Hölder ball as
Λ

γ
c(V )≡ {h ∈ Λγ(V ) : ‖h‖

Λγ ≤ c < ∞}, in which

‖h‖
Λγ ≡ max

a1+a2+a3≤γ
sup

ξ

|∇ah(ξ )|+ max
a1+a2+a3=γ

sup
ξ 6=ξ ′

|∇ah(ξ )−∇ah(ξ ′)|
(‖ξ −ξ ′‖E)

γ−γ
< ∞.

The space containing f01 = fy∗|s,l are assumed to be

F1 =

{
f1(·|·, ·) ∈ Λ

γ1
c (Y ∗×S ×L ) : Assumption 5 holds,

f3(·|s, l) is a positive density function for all s ∈S , l ∈L

}
.

Similarly, we assume f02 and f03 are in the following functional spaces

F2 =

{
f2(·|·) ∈ Λ

γ2
c (E y×S ) : Assumption 6 holds,

f2(·|s) is a positive density function for all s ∈S

}
,
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and

F3 = { f3(·|·) ∈ Λ
γ3
c (E z×Z ) : f3(·|l) is a positive density function for all l ∈L } ,

where E y and E z are supports of the error terms in equations (1) and (2), respectively.

Let A =Θ×F1×F2×F3 as the parameter space. The log-joint likelihood for α ≡ (θ T , f1, f2, f3)
T ∈

A is given by:

n

∑
i=1

log f (zi,yi,si, li) =
n

∑
i=1

`(Di;α),

in which Di = (zi,yi,si, li) and

`(Di;α) ≡ `(zi,yi,si, li;θ , f1, f2, f3)

= log{
∫

f1(y∗|si, li) f2(yi− y∗|si) f3(zi−m(y∗;θ)|li)dy∗}+ log f (si, li).

Let E[·] denote the expectation with respect to the underlying true data generating process for
Di. Then

α0 = arg sup
α∈A

E [`(Di;α)] .

We then use a sequence of finite-dimentional sieve spaces An = Θ×F n
1 ×F n

2 ×F n
3 to ap-

proximate the functional space A = Θ×F1×F2×F3. The seminonparametric sieve MLE

α̂n =
(

θ̂ T , f̂1, f̂2, f̂3

)T
∈An for α0 ∈A is defined as:

α̂n = argmax
α∈An

n

∑
i=1

`(Di;α).

Let pkn(·) be a kn×1−vector of known basis functions, such as power series, splines, Fourier
series, Legendre polynomials, Hermite polynomials, etc. We use linear sieves to directly ap-
proximate unknown densities:

F n
1 =

 f1(y∗|s, l) =

[
K

∑
i=1

J

∑
j=1

pk1,n(y∗)T
β1,i, jI(l = li)I(s = s j)

]2

∈F1



F n
2 =

 f2(e|s) =

[
J

∑
j=1

pk2,n(e)T
β2, jI(s = s j)

]2

∈F2


F n

3 =

 f3(e|l) =

[
K

∑
i=1

pk3,n(e)T
β3,iI(l = li)

]2

∈F3

 .



38

Below we present the asymptotic properties of the proposed estimator.

A.6. Consistency

Here we provide sufficient conditions for the consistency of the sieve estimator α̂n =
(

θ̂ T , f̂1, f̂2, f̂3,
)T

.

Assumption 7. (i) All the assumptions in theorem 1 hold; (ii) fy∗|s,l (·|s, l)∈F1 with γ1 > 1/2
for all s ∈S and l ∈L ; (iii) fεy|s(·|·) ∈F2 with γ2 > 1; (iv) fεz|l(·|·) ∈F3 with γ3 > 1.

Assumption 8. (i) {zi,yi,si, li}n
i=1 is i.i.d.; (ii) m(y∗;θ) is continuous in θ ∈ Θ, and Θ is a

compact subset of Rdθ ; (iii) θ0 ∈Θ is the unique solution of E[z|y∗, l] = m(y∗;θ) over θ ∈Θ.

We define a norm on A as: ‖α‖s = ‖θ‖E +‖ f1‖∞,ω1
+‖ f2‖∞,ω2

+‖ f3‖∞,ω3
in which ‖h‖

∞,ω j
≡

supξ

∣∣h(ξ )ω j (ξ )
∣∣ with ω j (ξ ) =

(
1+‖ξ‖2

E

)−ς j/2
, ς j > 0 for j = 1,2,3. We assume

Assumption 9. (i) −∞ < E [`(Di;α0)]< ∞, E [`(Di;α)] is upper semicontinuous on A under
the metric ‖·‖s; (ii) there is a finite τ > 0 and a random variable U(Di) with E{U(Di)} < ∞

such that supα∈An:‖α−α0‖s≤δ |`(Di;α)− `(Di;α0)| ≤ δ τU(Di).

Assumption 10. (i) pk j,n(·) is a k j,n× 1−vector of basis functions on R for j = 1,2,3; (ii)
min{k1,n,k2,n,k3,n}→ ∞ and max{k1,n,k2,n,k3,n}/n→ 0.

We then have

Lemma 1. Under Assumptions 7–10, we have ‖α̂n−α0‖s = op(1).

This is a direct extension from Carroll, Chen, and Hu (2010) , which uses theorem 3.1 in
Chen (2007).

A.7. Convergence Rates and Asymptotic Normality

The asymptotic properties of our estimator is a direct extension of that in Carroll, Chen, and
Hu (2010). We list the conditions below for readers’ convenience.
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A.7.1. Convergence Rates of Nonparametric Part

Given the consistency shown in Lemma 1, we focus on a shrinking || · ||s−neighborhood
around α0. Let A0s ≡ {α ∈ A : ||α −α0||s = o(1), ||α||s ≤ c0 < c} and A0sn ≡ {α ∈ An :
||α−α0||s = o(1), ||α||s ≤ c0 < c}. We assume that both A0s and A0sn are convex parameter
spaces, and that `(Di;α + τv) is twice continuously differentiable at τ = 0 for almost all Di
and any direction v ∈A0s.

Define the pathwise first and second derivatives of the sieve loglikelihood in the direction v as

d`(Di;α)

dα
[v]≡ d`(Di;α + τv)

dτ
|τ=0;

d2`(Di;α)

dαdαT [v,v]≡ d2`(Di;α + τv)
dτ2 |τ=0.

Mimicing Ai and Chen (2007), for any α1,α2 ∈A0s, we define a pseudo metric || · ||2 as

‖α1−α2‖2 ≡

√
−E
(

d2`(Di;α0)

dαdαT [α1−α2,α1−α2]

)
.

Our goal is to show that α̂n converges to α0 at a rate faster than n−1/4 under the pseudo met-
ric ‖·‖2. We make the following assumptions:

Assumption 11. (i) ς j > γ j for j = 1,2,3; (ii) max{k−γ1/2
1,n ,k−γ2/2

2,n ,k−γ3
3,n }= o(n−1/4).

Assumption 12. (i) A0s is convex at α0 and θ0 ∈ int (Θ); (ii) `(Di;α) is twice continuously
pathwise differentiable with respect to α ∈ A0s, and m(y∗;θ) is twice continuously differen-
tiable at θ0.

Assumption 13. supα̃∈A0s
supα∈A0sn

∣∣∣d`(Di;α̃)
dα

[
α−α0
‖α−α0‖s

]∣∣∣ ≤ U(Di) for a random variable

U(Di) with E{[U(Di)]
2}< ∞.

Assumption 14. (i) supv∈A0s:||v||s=1−E
(

d2`(Di;α0)
dαdαT [v,v]

)
≤C <∞; (ii) uniformly over α̃ ∈A0s

and α ∈A0sn, we have

−E
(

d2`(Di; α̃)

dαdαT [α−α0,α−α0]

)
= ‖α−α0‖2

2×{1+o(1)}.

These assumptions are standard in the literature. As a direct application of Theorem 3.2 of
Shen and Wong (1994) to the local parameter space A0s and the local sieve space A0sn, we
have

Theorem 2. Let γ ≡min{γ1/2, γ2/2, γ3}> 1/2. Under assumptions 7–14, if k1,n =O
(

n
1

γ1+1
)

,

k2,n = O
(

n
1

γ2+1
)

, and k3,n = O
(

n
1

2γ3+1

)
, then

‖α̂n−α0‖2 = OP

(
n
−γ

2γ+1
)
= oP

(
n−1/4

)
.
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A.7.2. Asymptotic Normality of Parametric Part

This section presents sufficient conditions for the asymptotic normality of the parametric part
of the model. Define an inner product corresponding to the pseudo metric ‖·‖2:

〈v1,v2〉2 ≡−E
[

d2`(Di;α0)

dαdαT [v1,v2]

]
,

where
d2`(Di;α0)

dαdαT [v1,v2]≡
d2`(Di;α0 + τ1v1 + τ2v2)

dτ1dτ2
|τ1=τ2=0.

Let V denote the closure of the linear span of A−{α0} under the metric ‖·‖2. Then
(
V,‖·‖2

)
is a Hilbert space. We define V = Rdθ ×U with U ≡ F1×F2×F3 −{( f01, f02, f03)}
and let h = ( f1, f2, f3) denote all the unknown densities. The pathwise first derivative can be
written as

d`(Di;α0)

dα
[α−α0] =

d`(Di;α0)

dθ T (θ −θ0)+
d`(Di;α0)

dh
[h−h0]

=

(
d`(Di;α0)

dθ T − d`(D;α0)

dh
[µ]

)
(θ −θ0),

with h−h0 ≡−µ× (θ −θ0), and in which

d`(Di;α0)

dh
[h−h0] =

d`(Di;θ0,h0(1− τ)+ τh)
dτ

|τ=0

=
d`(Di;α0)

d f1
[ f1− f01]+

d`(Di;α0)

d f1a
[ f1a− f01a]

+
d`(Di;α0)

d f2
[ f2− f02]+

d`(Di;α0)

d f2a
[ f2a− f02a] .

Note that

E
(

d2`(Di;α0)

dαdαT [α−α0,α−α0]

)
= (θ −θ0)

T E
(

d2`(Di;α0)

dθdθ T −2
d2`(Di;α0)

dθdhT [µ]+
d2`(Di;α0)

dhdhT [µ,µ]

)
(θ −θ0),

with h−h0 ≡−µ× (θ −θ0), and in which

d2`(Di;α0)

dθdhT [h−h0] =
d(∂`(Di;θ0,h0(1− τ)+ τh)/∂θ)

dτ
|τ=0,

d2`(Di;α0)

dhdhT [h−h0,h−h0] =
d2`(Di;θ0,h0(1− τ)+ τh)

dτ2 |τ=0.
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For each component θ k (of θ ), k = 1, ...,dθ , suppose there exists a µ∗k ∈U that solves:

µ
∗k : inf

µk∈U
E
{
−
(

∂ 2`(Di;α0)

∂θ k∂θ k −2
d2`(Di;α0)

∂θ kdhT [µk]+
d2`(Di;α0)

dhdhT [µk,µk]

)}
.

Denote µ∗ =
(
µ∗1,µ∗2, ...,µ∗dθ

)
with each µ∗k ∈U , and

d`(Di;α0)

dh
[µ∗] =

(
d`(Di;α0)

dh

[
µ
∗1] , ..., d`(Di;α0)

dh

[
µ
∗dθ

])
,

d2`(Di;α0)

∂θdhT [µ∗] =

(
d2`(Di;α0)

∂θdh
[µ∗1], ...,

d2`(Di;α0)

∂θdh
[µ∗dθ ]

)
,

d2`(Di;α0)

dhdhT [µ∗,µ∗] =


d2`(Di;α0)

dhdhT [µ∗1,µ∗1] · · · d2`(Di;α0)
dhdhT [µ∗1,µ∗dθ ]

· · · · · · · · ·
d2`(Di;α0)

dhdhT [µ∗dθ ,µ∗1] · · · d2`(Di;α0)
dhdhT [µ∗dθ ,µ∗dθ ]

 .

We also define

V∗ ≡−E
(

∂ 2`(Di;α0)

∂θ∂θ T −2
d2`(Di;α0)

∂θdhT [µ∗]+
d2`(Di;α0)

dhdhT [µ∗,µ∗]

)
. (21)

We then consider a linear functional of α , which is λ T θ for any λ ∈ Rdθ with λ 6= 0. Since

sup
α−α0 6=0

|λ T (θ −θ0) |2

||α−α0||22

= sup
θ 6=θ0,µ 6=0

(θ −θ0)
T λλ T (θ −θ0)

(θ −θ0)T E
{
−
(

d2`(Di;α0)
dθdθ T −2d2`(Di;α0)

dθdhT [µ]+ d2`(Di;α0)
dhdhT [µ,µ]

)}
(θ −θ0)

= λ
T (V∗)−1

λ ,

the functional λ T (θ −θ0) is bounded if and only if the matrix V∗ is nonsingular.

Suppose that V∗ is nonsingular. For any fixed λ 6= 0, denote υ∗ ≡ (v∗
θ
,v∗h) with v∗

θ
≡ (V∗)−1λ

and v∗h≡−µ∗×v∗
θ

. Then the Riesz representation theorem implies: λ T (θ −θ0)= 〈υ∗,α−α0〉2
for all α ∈A . We can show equation (22) as follows:

λ
T (θ̂n−θ0) = 〈υ∗, α̂n−α0〉2 =

1
n+na

∑
n
i=1

d`(Di;α0)

dα
[υ∗]+op{n−1/2}. (22)

Denote N0 = {α ∈ A0s : ‖α−α0‖2 = o(n−1/4)} and N0n = {α ∈ A0sn : ‖α−α0‖2 =

o(n−1/4)}. We provide additional sufficient for asymptotic normality of sieve MLE θ̂n as fol-
lows:
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Assumption 15. µ∗ exists (i.e., µ∗k ∈U for k = 1, ...,dθ ), and V∗ is positive-definite.

Assumption 16. There is a υ∗n ∈An−{α0}, such that ||υ∗n −υ∗||2 = o(1) and ‖υ∗n −υ∗‖2×
‖α̂n−α0‖2 = oP(

1√
n).

Assumption 17. There is a random variable U(Di) with E{[U(Di)]
2}<∞ and a non-negative

measurable function η with limδ→0 η(δ ) = 0, such that, for all α ∈N0n,

sup
α∈N0

∣∣∣∣d2`(Di;α)

dαdαT [α−α0,υ
∗
n ]

∣∣∣∣≤U(Di)×η(||α−α0||s).

Assumption 18. Uniformly over α ∈N0 and α ∈N0n,

E
(

d2`(Di;α)

dαdαT [α−α0,υ
∗
n ]−

d2`(Di;α0)

dαdαT [α−α0,υ
∗
n ]

)
= o

(
1√
n

)
.

Assumption 19. E{
(

d`(Di;α0)
dα

[υ∗n −υ∗]
)2
} goes to zero as ‖υ∗n −υ∗‖2 goes to zero.

Recall the definitions of Fisher inner product and the Fisher norm:

〈v1,v2〉 ≡ E
{(

d`(Di;α0)

dα
[v1]

)(
d`(Di;α0)

dα
[v2]

)}
, ‖v‖ ≡

√
〈v,v〉.

Under correct specification, m(y∗;θ0) = E(z|y∗, l), it can be shown that ‖v‖ = ‖v‖2 and
〈v1,v2〉 = 〈v1,v2〉2. Thus, the space V is also the closure of the linear span of A−{α0} un-
der the Fisher metric ‖·‖.

Suppose that θ has dθ components, and write its kth component as θ k. Write µ∗=
(
µ∗1,µ∗2, ...,µ∗dθ

)
,

where we compute µ∗k ≡
(
µ∗k1 ,µ∗k2 ,µ∗k3

)T ∈U as the solution to

inf
µk∈U

E

{(
d`(Di;α0)

dθ k − d`(Di;α0)

dh

[
µ

k
])2

}

= inf
(µ1,µ2,µ3)

T∈U
E


(

d`(Di;α0)
dθ k − d`(Di;α0)

d f1
[µ1]

−d`(Di;α0)
d f2

[µ2]− d`(Di;α0)
d f3

[µ3]

)2
 .

This equation also defines d`(Di;α0)
dh [µ∗]. Then Sθ0 ≡

d`(Di;α0)
dθ T − d`(Di;α0)

dh [µ∗] becomes the
semiparametric efficient score for θ0, and

I∗ ≡ E
[
S T

θ0
Sθ0

]
=V∗ (23)

becomes the semiparametric information bound for θ0.

Finally, we can show that the sieve MLE θ̂n is asymptotically normally distributed around θ0
as follows:
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Theorem 3. Suppose that Assumptions of Lemma 1, and Assumptions 11–19 hold. Then:
√

n(θ̂n− θ0)
d→ N(0,V−1

∗ I∗V−1
∗ ), with V∗ defined in equation (21) and I∗ given by equation

(23).

APPENDIX B. ROBUSTNESS CHECKS: SIMU-
LATIONS, SPECIFICATIONS, AND ESTIMATES

In this section, we conduct simulation exercises to confirm our estimation strategy and do a
number of robustness checks with respect to data and specification.

B.1. Simulations

We consider a data generating process similar to equations (1) and (2) with a quadratic night-
time light production function. There are six equal-sized groups of countries based on statisti-
cal capacity (si = 1,2,3) and location (li = 1,2). Each group’s true GDP distribution follows
a mixture of two normal distributions. Measurement errors in both GDP per capita and night-
time lights follow normal distributions where the variances σ(s) and σ(l) differ for different
groups. The quadratic function m(·) is assumed to have the same coefficients as point esti-
mates in the DMSP/OLS data. In the simulation, we draw 400 samples with size n = 4000.
Table 7 shows the parameter details in the simulations.

Table 7. Parameterization in Simulations

Group y∗ σ(s) σ(l)

1 0.6N(−0.8,0.62)+0.4N(0.8,0.72) 0.4 1
2 0.7N(−1,0.92)+0.3N(0.7,0.82) 0.4 0.8
3 0.4N(−0.1,0.62)+0.6N(0.2,0.82) 0.3 1
4 0.2N(−0.4,0.72)+0.8N(0.6,0.72) 0.3 0.8
5 0.3N(−0.2,0.82)+0.7N(1,0.62) 0.1 1
6 0.5N(−1,1)+0.5N(−0,4,0.62) 0.1 0.8

Table 8 presents the simulation results with different choices of the number of orthogonal
Hermite terms. The coefficients of the quadratic production function are accurately estimated
around k = 6. For this reason, we apply k = 6 to DMSP/OLS data and k = 4 to VIIRS data
since the latter has much less observations.
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Table 8. Simulation Results

m(y∗) = θ0 +θ1y∗+θ2(y∗)2

Parameter θ0 θ1 θ2

True values 0.398 1.234 -0.244

k = 4 0.364 1.343 -0.229
(0.083) (0.075) (0.065)

k = 5 0.370 1.334 -0.234
(0.039) (0.047) (0.030)

k = 6 0.365 1.328 -0.227
(0.041) (0.111) (0.030)

k = 8 0.357 1.311 -0.221
(0.091) (0.140) (0.058)

Standard errors are based on 400 sample bootstraps.

To give an idea of how well orthogonal Hermite series approximate density functions, Figure
9 shows an example of the approximated density functions of measurement errors in GDP per
capita in one of the simulations (k = 6). The approximation is broadly in line with the true
distributions.

Figure 9. Example of Density Function Approximation

(a) Low Capacity (b) High Capacity (c) High Income

In Section V.C, we proposed two new measures of real GDP per capita: the optimal linear
measure and the semiparametric conditional mean. While the latter makes full use of the in-
formation in the conditional distributions, its nonparametric feature nonetheless makes it less
robust because it requires a large sample size to perform well. In the sparse area of the empir-
ical distribution of (yi,t ,zi,t ,si,t , li), the semiparametric conditional mean can be volatile, while
the optimal linear measure remains robust. In the area where the density f (yi,t ,zi,t ,si,t , li)
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takes a relatively larger value, the conditional mean is actually stable and also close to the
optimal linear measure.

Graph (a) of Figure 10 contrasts the difference between the semiparametric conditional mean
and the optimal linear measure (E[y∗i,t |yi,t ,zi,t ,si,t , li]− ŷ∗) against the empirical kernel density
estimates of f (y,z,s, l) in the simulated data. Notice that the the difference between the semi-
parametric conditional mean and the optimal linear measure decreases as the empirical den-
sity increases. Meanwhile, we actually observe the true value y∗i,t in the simulation. Graph (b)
and (c) show scatter plots of the optimal linear measure and the semiparametric conditional
mean against the true values, respectively. Our new measures perform very well in terms of
predicting the true value y∗i,t . The mean squared error for the optimal linear measure is slightly
smaller but very close to that of the semiparametric conditional mean in the simulation.

For these reasons, we make the optimal linear measure our choice of the new measure for the
true GDP.

B.2. Alternative Specifications

We consider a number of alternative specifications of the model.

First, we consider cases where the nighttime lights production function m(·) could be linear
or cubic. As suggested by Table 3, the quadratic term is statistically significantly different
from zero. However, if we impose that the production function is linear, the estimation re-
sults in high income countries having the highest measurement errors. Figure 11 shows that
under the linear specification, deviations from the nighttime lights production function are
wrongly attributed to measurement errors in official GDP. While the linear specification is
mis-specified, the cubic term is not significantly different from zero and it results in unstable
performance of the model.

Second, we consider more parametric specification of the error terms in equations (1) and (2).
In particular, we assume ε

y
i,t(si) = σ(s)εy

i,t and ε
z
i,t(li) = σ(l)εz

i,t . In other words, the distri-
bution of measurement errors is the same up to a change of variance for all three groups of
countries with different statistical capacity, and similarly for measurement errors in nighttime
lights. This specification has the advantage of having less parameters to estimate. Using the
same number of sieve terms k = 6 for the error terms as in our baseline specification (1) and
(2), we obtain similar results, as shown in Figure 12 and Table 9. However, we find this spec-
ification to be less robust to the choice of the number of sieve terms despite its parsimonious
specification. Thus we choose the distribution of measurement errors to be different for coun-
tries with different statistical capacity and geographical location groups.
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Figure 10. Semiparametric Conditional Mean and Optimal Linear Measure
Performance in Simulations

(a) Difference between New Measures

(b) Optimal Linear Measure
vs. True Values

(c) Semiparametric Conditional Mean
vs. True Values

Third, we consider a full parametric specification where the nighttime lights production func-
tion is quadratic and the true GDP per capita as well as all measurement errors are normally
distributed. Despite being computationally lightweight, the full parametric specification is not
very robust to outliers. Using the full DMSP/OLS sample, we obtain the counterintuitive and
incorrect results that high income economies have the highest measurement error, as shown
in Table 10. However, if we remove Special Administrative Regions such as Hong Kong SAR
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Table 9. Estimated Light Production Function (DMSP/OLS)
with Parsimonious Error Structure

m(y∗) = θ0 +θ1y∗+θ2(y∗)2

Parameter θ0 θ1 θ2

Point Estimate 0.326 1.261 -0.212
Standard Error (0.160) (0.090) (0.032)

Data are re-centered at zero. Standard errors are based on 400 sample
bootstraps.

Figure 11. Linear Specification

(a) Model vs. Data (b) Distribution of Measurement Error

Figure 12. Quadratic Specification with More Parsimonious Error Structure

(a) Model vs. Data (b) Distribution of Measurement Error
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and Macau SAR, and city states such as Singapore, where nighttime lights per capita was un-
usually low as a result of high population density, we obtain the more intuitive results that the
variance of measurement errors is much smaller for high income countries. In light of this
sensitivity, we prefer the semiparametric specification.

Table 10. Full Parametric Specification (DMSP/OLS)

m(y∗) = θ0 +θ1y∗+θ2(y∗)2

Parameter θ0 θ1 θ2 σ
y
1 (low capacity) σ

y
2 (high capacity) σ

y
3 (high income)

All Data

Point Estimate 0.336 1.352 -0.256 0.458 0.474 0.791
Standard Error (0.047) (0.034) (0.041) (0.025) (0.020) (0.056)

Excluding Hong Kong SAR, Macau SAR, and Singapore

Point Estimate 0.316 1.354 -0.268 0.458 0.471 0.050
Standard Error (0.012) (0.015) (0.008) (0.019) (0.015) (0.006)

Data are re-centered at zero. Standard errors are based on 400 sample bootstraps.

Finally, we consider combining the DMSP/OLS and VIIRS datasets by assuming that the
measurement errors in official real GDP per capita follow the same distribution in the two
datasets. We find that the estimated production functions are similar to our baseline results
and there is little change in our new measures of real GDP per capita.

B.3. Gas Flaring in the Data

While nighttime lights primarily reflect economic activities for a majority of countries, it is
recognized in the literature (for example, Henderson, Storeygard, and Weil (2012)) that the
flaring of natural gas might make nighttime lights incommensurate with the level of eco-
nomic development. To examine the extent to which gas flares affect our results, we use gas
flare shapefiles (polygons) provided by NOOA16 and calculate the fraction of nighttime lights
within gas flare shapefiles in a country.

As an example, Figure 13 shows a map of Nigeria where the white area is the shapefile that
contains gas flares and the green area is the rest of the country. We obtain the fraction of
nighttime lights in gas flare shapefiles (denoted by τ) by aggregating the nighttime lights
within the white area first and then divide the sum by the total sum of lights in Nigeria.

16https://ngdc.noaa.gov/eog/interest/gas_flares_countries_shapefiles.html

https://ngdc.noaa.gov/eog/interest/gas_flares_countries_shapefiles.html


49

Figure 13. Gas Flares in Nigeria

Table 11 ranks countries by the fraction of nighttime lights in gas flare shapefiles in descend-
ing order. Among the highest are Equatorial Guinea, Gabon, and Nigeria. Most of the coun-
tries with high ranks are African and Middle East oil producers. While China and the United
States produce oil, the vast majority of nighttime lights were produced in areas outside of the
gas flare shapefiles. In particular, nighttime lights within gas flare shapefiles account for about
1 percent of total nighttime lights in China between 1992-2013 and even less for the United
States. When dropping countries with τ ≥ 0.02 (34 countries) and reestimating our model,
we find no statistically significant difference in estimated coefficients of the nighttime light
production function compared to the full sample.

B.4. Optimal Linear Measure for More Countries

Given the high uncertainty about official data in low income countries, we present more re-
sults comparing the optimal linear measure of real GDP per capita with official data for a
number of low income countries in Figure 14. Note that the optimal linear measure being
close to official data for some low income countries does not necessarily mean the official
data are accurate. More often than not, it means nighttime lights for those countries do not
contain much information either as a result of lack of electricity. As such the optimal linear
measure puts low weight on nighttime light-predicted GDP. Nevertheless, these estimates
show that our proposed optimal linear measure performs very reliably across countries.
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Table 11. Fraction of Nighttime Lights in Gas Flare Shapefiles

ISO code τ ISO code τ ISO code τ ISO code τ

GNQ 0.75 RUS 0.17 VEN 0.08 AUS 0.01
GAB 0.69 AGO 0.16 ARE 0.06 CHN 0.01
NGA 0.57 SYR 0.15 SAU 0.05 CMR 0.01
LBY 0.36 ECU 0.15 EGY 0.04 MYS 0.00
IRQ 0.32 TKM 0.15 ARG 0.04 USA 0.00
KWT 0.31 TCD 0.14 SDN 0.03 ZAF 0.00
OMN 0.31 BOL 0.13 COL 0.03 PHL 0.00
DZA 0.30 PNG 0.13 CHL 0.03 BRA 0.00
COG 0.26 COD 0.11 PER 0.02 NOR 0.00
QAT 0.26 IRN 0.10 TUN 0.02 TTO 0.00
KAZ 0.24 UZB 0.09 CAN 0.01 · · · · · ·
YEM 0.20 IDN 0.09 AZE 0.01 · · · · · ·

Notes. τ is the ratio of the sum of nighttime lights in gas flare shapefiles to that in the whole
country averaged between 1992-2013.

B.5. Semiparametric Conditional Mean for Robustness Check

In section III.C.2, we discussed the use of the semiparametric conditional mean as another
new measure of real GDP per capita. Despite its clear advantage of making full use of the
information in the conditional distributions, its nonparametric feature makes it less robust
without a large sample size.

Figure 15 plots the difference between the semiparametric conditional mean and the optimal
linear measure (E[y∗i,t |yi,t ,zi,t ,si,t , li]− ŷ∗) against the empirical kernel density estimates of
f (y,z,s, l) in DMSP/OLS data. Consistent with the simulation results in Section B.1, as the
empirical density increases, the difference between the semiparametric conditional mean and
the optimal linear measure decreases. Note that the difference is almost zero for high income
countries because their measurement errors that are identifiable by our method are very small.

APPENDIX C. MORE DESCRIPTIVE DETAILS ON DATA

C.1. Nighttime Lights vs. Real GDP per capita

Figure 16 presents where countries are located on nighttime lights and real GDP per capita
graph. We choose selectively a few countries that together span the real GDP per capita spec-
trum.
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Figure 14. New Measures for Low Income Countries

(a) Afganistan (b) Benin (c) Burundi

(d) Haiti (e) Madagascar (f) Mali

(g) Niger (h) Rwanda (i) Togo

C.2. Statistical Capacity and Latitude

We use the World Bank’s Statistical Capacity Indicator17 for developing countries as our vari-
able s for statistical capacity. The Statistical Capacity Indicator is a composite score assessing
the capacity of a country’s statistical system, including the following areas: methodology;
data sources; and periodicity and timeliness. The scores are based on 25 criteria in these ar-
eas and the overall Statistical Capacity score is then being calculated as simple average of all
three area scores on a scale of 0-100.

Because the indicator starts in 2004 and the change over time for each country is small, we
use the average score during our sample periods for each country. Since high income coun-
tries don’t have scores, we assign them the highest score and treat them as a separate group.

17http://datatopics.worldbank.org/statisticalcapacity/

http://datatopics.worldbank.org/statisticalcapacity/
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Figure 15. Semiparametric Conditional Mean and Optimal Linear Measure

Figure 17 shows that there is a clear positive relationship between real GDP per capita and
statistical capacity. Note that high income countries are located on the top right corner where
statistical capacity is 100 by construction.

A country’s latitude is calculated as the centroid of its largest contiguous block. We focus on
contiguity because oversea territories or separate land blocks would complicate the definition
of the geographic center of a country. As an example, Figure 18 illustrates the centroids that
we use for a few European countries. Figure 19 shows that real GDP per capita varies with
latitude. Countries at high latitude in both the Northern and the Southern Hemispheres tend to
be rich whereas countries at low latitude tend to be poor. This is the well-known North-South
Divide.

Collectively, Figure 17 and 19 indicate that Assumption 5 is fairly reasonable, i.e., the distri-
bution of real GDP varies with countries’ statistical capacity and geographic location.
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Figure 16. Nighttime Lights vs. Real GDP per capita (1992-2013)
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Figure 17. Real GDP per capita vs. Statistical Capacity by Location
(1992-2013)



55

Figure 18. Centroids of Selected European Countries
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Figure 19. Real GDP per capita vs. Latitude by Statistical Capacity
(1992-2013)
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