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model. First, some agents cannot afford staying home to minimize their virus exposure,

while others can. Our results show that these poor agents bear most of the epidemic’s

health costs. Moreover, we show that having more agents who do not change their be-

havior during the pandemic could lead to a deeper recession. Second, agents are hetero-

geneous in developing symptoms. We show that diseases with higher share of asymp-

tomatic cases, even if less lethal, lead to worse health and economic outcomes. Public
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I. INTRODUCTION

COVID-19 infections present a key feature that make them challenging to control. Different
from previous SARS outbreaks, many SARS-COV-2 patients take longer to develop symp-
toms, and some are completely asymptomatic. Consequently, it is much harder to isolate
infected individuals before they transmit the virus to others. Hence, outbreaks can happen
rather quickly, many times triggering strict policies such as lockdowns and social distancing.

Moreover, the impact of the pandemic and the measures implemented to try to control it have
varied across income levels. Poor neighborhoods, in particular those with heavy minority
populations, have seen a significantly larger number of cases and deaths (see Table 1).1 There
are a few reasons for this pattern. First, many of the services deemed essential which have
continued to be supplied during the pandemic are done by low wage workers (supermarket
personnel, delivery services, etc.). Second, these communities are likely to have denser pop-
ulations, which facilitates the spread of the disease. Finally, individuals in these communi-
ties are usually in occupations that do not allow for remote working (see Dingel and Neiman
(2020) and Mongey, Pilossoph, and Weinberg (2020)). They also tend to have very little in
fallback savings and wealth. Consequently, they cannot adjust their labor supply optimally in
response to a higher likelihood of infection. Similarly, measures to contain the spread of the
virus are particularly harsh on poor communities.

Meanwhile, higher income individuals are better able to minimize their exposure to the virus.
Even without stay- at-home orders, unconstrained individuals who have the means to adjust
their behavior may optimally reduce their exposure to infection. For example, in Figure 1
we show the year-over-year change in the number of seated diners in Texas and the state of
Washington using the online, phone, and walk-in reservations from OpenTable.com.2 The
vertical lines indicate the dates in which the states respectively enacted and lifted their stay-
at-home orders. Reservations fell significantly well before stay-at-home orders were enacted
and remained far below their previous year’s levels long after the restrictions were lifted.
Similar patterns are observed in air travel and hotel occupancy.

In this paper, we propose and calibrate a search and matching model that allows us to intro-
duce some of these stylized facts in an epidemiological setting. In particular, we consider how

1Neighborhood poverty is the percent of a ZIP code’s population living below the federal poverty level, in the
2013-2017 American Community Survey. Low poverty: under 10 percent; Medium poverty: 10 percent to 19.9
percent; High poverty: 20 percent to 29.9 percent; Very high poverty: 30 percent and over.
2We present Texas and Washington to show a comparison between states that imposed different restrictions and

with different timing. All states in Open Table’s database show quite similar patterns.
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the presence of asymptomatic and pre-symptomatic infected agents as well as the presence of
agents who can and cannot optimally adjust their time allocation (henceforth time-constrained
agents) impact the evolution of the pandemic. Moreover, we consider how this agents’ het-
erogeneity interact with public policy. Specifically, we discuss how the presence of asymp-
tomatic and pre-symptomatic infected agents as well as time-constrained agents interacts with
the effectiveness of tests (both viral and antibody) and lockdowns in reining in the spread of
the disease. Furthermore, we consider how these features affect the economic outcomes of
policies designed to mitigate GDP losses cased by the disease.

Our results show that introducing asymptomatic and pre-symptomatic agents as well as time-
constrained agents is vital to evaluating these disease control policies. Given the same level
of pre-infection expected mortality, if the incidence of asymptomatic agents is larger, then the
numbers of expected infected agents and expected deaths are larger as well. The reason is be-
cause asymptomatic and pre-symptomatic agents spend more time outside infecting healthy
but susceptible agents. In turn, the economy will suffer as unconstrained agents are com-
pelled to even more drastically reduce their time spent outdoors as it is riskier to engage in
outside activities. Consequently, the impact of testing is significantly larger in an economy
with more asymptomatic agents. Viral tests allow us to quarantine infected asymptomatic and
pre-symptomatic agents, reducing the infection rate. This not only has the benefit of lower-
ing the expected number of casualties due to the disease, but also allows unconstrained agents
to optimally increase their labor supply, improving economic activity. Meanwhile, antibody
tests reveal to unconstrained agents who had an asymptomatic infection that they might have
acquired immunity, allowing them to optimally adjust their labor supply. As a result, the eco-
nomic impact of testing is quite substantial in the case in which the incidence of asymptom-
atic infections is high. In particular, if we consider the case in which 80 percent of the infec-
tions are asymptomatic, increasing testing from 0 to 10 percent represents a cumulative gain
of around 6.3 percent of GDP after two years. As for the shape of the recession, the harder
a country is hit by the epidemic, the quickest its recovery. However, cumulative GDP losses
during the pandemic are not recovered.

Similar patterns are observed when the incidence of time-constrained agents is larger. The
peak of the infected population is reached earlier and the numbers of infected and dead are
significantly higher. Time-constrained agents are particularly affected. Following a calibra-
tion that represents an emerging market economy, without considering the possibility of a
health system collapse, our results show that 85 percent of time-constrained agents would
be infected at some point and 0.18 percent would die. In contrast, only 21 percent of uncon-
strained agents would get infected and less than 0.05 percent would die. Since the likelihood
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of infection is significantly higher in an economy with lots of time-constrained agents, uncon-
strained agents dramatically reduce their labor supply, with significantly negative impacts on
GDP. In our quantitative exercise, an increase of 20 percentage points in the share of time-
constrained agents increases GDP losses by 3.7 percentage points.

The impact of viral testing in an economy with more time-constrained agents is again two-
fold. First, it reduces the infection rate, by quarantining asymptomatic and pre-symptomatic
agents. Notice that the effect of testing is particularly important in the case of time-constrained
agents, once these agents do not adjust their time allocation to activities as the infection rate
goes up. Consequently, they are not only more likely to contract the virus, but they are also
more likely to spread it. Second, as fewer infected agents are allowed to circulate, infection
rates go down and unconstrained agents optimally increase their labor supply. In quantitative
terms, in an economy with a 50 percent share of time-constrained agents, moving from a 0
percent to a 10 percent incidence of tests implies a reduction of 90,000 in the number of dead
from the disease. Similarly, compared to an economy with no testing, a 10 percent testing rate
increases GDP by 2.8 percentage points.

In terms of the effect of lockdowns, we show that while lockdowns are able to slow down the
virus spread, they are ineffective in reducing economic and human cost of the epidemic if im-
plemented without further measures. In particular, in our benchmark calibration, the introduc-
tion of lockdowns reduces the number of deaths due to COVID-19 by 11,500 in the first year
and fewer than 5,000 in the second year. In terms of the economic impact, GDP growth falls
by 5 percentage points in the first year compared to the no-lockdown benchmark, while there
is no difference in the second year. Given the sharp recession in the first year, our quantitative
results imply a high cost per life saved. Depending on the type of lockdown – comprehen-
sive and short or mild and long – the cost per life is $26 million and $54 million, respectively.
The main reason our costs are significantly higher than the ones featured in other papers in
the literature, such as Greenstone and Nigam (2020), is that in our benchmark model, uncon-
strained agents already optimally adjust their time allocation in response to the possibility of
infection. Consequently, the benchmark case already factors in most of the potential benefits
of the lockdown at least in a developed country with few time-constrained agents.

The comparison between the benchmark case and the case with lockdowns highlights that
lockdowns are probably more useful in stopping the spread of the disease in developing econ-
omies, with high shares of time-constrained agents. In fact, considering the extreme case
in which all agents are time-constrained, a mild and long lockdown would be able to save
325,000 lives at a cost of $2.5 million per life, well below our benchmark. However, our
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calibration which is closer to an average emerging economy, with around 50 percent time-
constrained agents, still shows a cost per life of around $14 million. Moreover, this figure
neither factors in the significant costs of preventing time-constrained agents from going to
work nor the transfers needed to be made to this population in order to make such a lockdown
viable.

In summary, our results show that both viral and antibody testing are necessary to reduce the
spread of the disease and the economic cost inflicted by the epidemic. Moreover, we show
that the higher the share of the infected population that is asymptomatic and the higher the
share of the population who cannot optimally adjust their time allocation, the more important
testing becomes. In contrast, lockdowns delay the progression of the virus, but, without fur-
ther measures, are not an effective way of controlling the human and economic impacts of the
epidemic, even in the case of an emerging economy.

Our results are certainly relevant from a policy perspective. First, they highlight the impor-
tance of clearly identifying the likelihood that asymptomatic and pre-symptomatic infected
agents will spread the virus. While contagion by pre-symptomatic agents has been well-
established (He and others (2020)), there are still some questions about the likelihood of
asymptomatic agents transmitting the disease (Bai and others (2020)). Second, they show that
viral testing, while a very important tool to control the spread of the disease to all countries,
is particularly important for developing economies and poor neighborhoods. Unfortunately,
as we can see in Figure 2, low-income economies have lagged significantly behind advanced
economies in testing their populations.

The paper is divided into 6 sections. Section 2 discusses the literature on COVID-19. Section
3 presents our theoretical model. Section 4 describes the functional forms used in our quan-
titative results and the calibration of the parameters. Section 5 shows our main quantitative
results, while Section 6 concludes the paper.
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(a) Texas (b) Washington

Figure 1. Change in the Number of Dine-in Customers: Open Table.com

Table 1. COVID-19 Cases in NYC
Differences by Neighborhood Poverty Level

Cases Hospitalizations Deaths

Low poverty 1,806.52 351.38 110.14
Medium poverty 2,189.35 540.92 176.14
High poverty 2,334.32 684.04 221.06
Very High poverty 2,709.08 771.87 525.17
Note: Rate per 100,000 people (age-adjusted)
Source: https://www1.nyc.gov/site/doh/covid/covid-19-data.page

Figure 2. Viral Testing: Rich vs. low-income economies
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II. RELATED LITERATURE

The literature incorporating epidemiology dynamics into economic models is a fast-growing
field amid developments from the COVID-19 epidemic. We will focus on summarizing the
branch of this literature that is related to the direct contributions of this paper. Few papers dis-
cuss the role of testing as it pertains to the epidemic’s dynamics and economic outcomes. ?
is one of the first papers to incorporate optimizing behavior and search and matching model-
ing techniques in an SIR model. They discuss the shape of matching functions in epidemics
and make the case for a matching technology with increasing returns to scale. Our choice
of the matching function is inspired by the search and matching literature and some of our
results follow the intuition of ?. However, our paper introduces agents’ heterogeneity with
time-constrained and asymptomatic individuals. Consequently, we are able to discuss the role
of testing in an environment with asymptomatic infected agents as well as agents whose eco-
nomic activities are either essential or time-constrained by economic need.

In the context of known health outcomes and a social planner’s optimal policy, Piguillem and
Shi (2020), Alvarez, Argente, and Lippi (2020) and Holtemöller (2020) study optimal lock-
down, testing, and quarantine policies in a variant of the SIR model. These papers differ from
ours because we study a competitive equilibrium with heterogeneous agents. We also allow
for an interaction between peoples economic decisions, testing, and the dynamics of the epi-
demic.

A few recent papers consider models in which health status is not fully known by economic
agents when making decisions, which is also a key point in our model. Piguillem and Shi
(2020) solve an optimal control problem to find the best testing policy. In their paper, only
the central planner’s problem is studied and behavioral reactions to the epidemic are absent.
Farboodi, Jarosch, and Shimer (2020) analyze a case where health status is never known; that
is, they do not allow for the possibility of testing. Agents choose their level of social activity,
affecting the contagion rate. Differently from our paper, they do not consider the effects of the
epidemic on production decisions. Eichenbaum, Rebelo, and Trabandt (2020b) incorporate
economic choices into a time-varying SIR model. In their model, as in ours, people do not
know their health status and testing allows a better trade-off between declines in economic
activity and health outcomes. In their paper, however, asymptomatic people are not discussed,
and the matching function is similar to a standard SIR model. The role of testing is limited to
informing agents about their health status, and only forced quarantine can lower transmission.
In our paper, however, testing affects economic outcomes through two sources. First, it affects
the virus’ dynamics by preventing infected persons from contacting susceptible individuals.
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Second, the antibody test does not significantly affect the virus’ dynamics but does boost the
economy by providing information to people who recovered without developing symptoms.
Finally, Cherif and Hasanov (2020) also made the case for universal testing and isolation be-
ing the most viable way to contain the pandemic. Differently from our paper, they abstract of
behavioral responses to the pandemic and do not access the role of heterogeneity.

Similar to our paper, Brotherhood and others (2020) also investigate the role of testing in an
amplified SIR epidemiological model with heterogeneous agents and behavioral choices. In
their paper, there are only symptomatic people and testing shortens the time of uncertainty.
They analyze the efficacy of testing, quarantine, and lockdowns where agents are partially
altruistic. Unlike in our paper, their heterogeneity is based on age. Younger people, who are
less likely to die, impose externalities on the old. In our case, those externalities come from
the time-constrained consumers. They also do not analyze the case of asymptomatic people
and the positive impact of that information on health status has on the economy. In terms
of agents’ heterogeneity, Glover and others (2020) have different age groups in their model
and they solve for the optimal containment policy in this scenario. Similarly, Acemoglu and
others (2020) also feature age heterogeneity in a multi-group SIR model where optimal con-
tainment measures are calculated in a control problem. Kaplan, Moll, and Violante (2020)
introduce agents heterogeneity with respect to their occupation. They document that people
with lower labor income work in vulnerable occupations. Krueger, Uhlig, and Xie (2020) ex-
tend the framework in Eichenbaum, Rebelo, and Trabandt (2020a) to consider sectoral het-
erogeneity when assessing the epidemic’s dynamics. They consider how the substitution of
consumption across sectors can help to lower the spread of the virus even without government
restrictions on economic activity. Different from our work, they employ a SIR matching func-
tion, focus on sectoral effects, and do not discuss the role of asymptomatic agents and testing.
Favero, Ichino, and Rustichini (2020) allow for age and sector heterogeneity and analyze the
effect of stylized policies to end the lockdown in Italy. They do not consider the feedback
loop of individual behavior and transmission, nor do they consider the uncertainty about in-
fection status or testing.

Finally, in contrast to all of the papers cited above, we consider heterogeneous agents based
on time allocation constraints.
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III. MODEL

A. Environment

Time is discrete. There is a measure n of agents who discount the future at rate β > 0. We
consider two types of agents, distinguished by their ability to optimally adjust their time allo-
cation. Unconstrained agents can optimally allocate their weekly time endowment L across
work (Lw), leisure (Ll), and time at home (Lh), while time-constrained agents3 have very
limited control over their time allocation. In particular, we assume that they either allocate
their time as if there were no pandemic or spend all their time at home if they are sick or
in quarantine. We assume that the fraction of time-constrained agents is given by ϑ . Both
types of agents can be in the following states: healthy but susceptible (h), infected (i), sick (s),
recovered(r), or dead (d). However, transitions across states are not necessarily observed by
agents. In particular, infection and recovery, as we describe in detail below.

Healthy but susceptible agents become infected if they are exposed to the virus. They are ex-
posed if they meet infected agents while working or participating in leisure activities. In par-
ticular, we assume that the arrival rate of infection λt(Lw

t ,L
l
t) in time t is:

λt(Lw
t ,L

l
t) =

mw(T Hw
t ,T Iw

t )

T Hw
t

Lw
t +

ml(T Hw
t ,T Iw)

T H l
t

Ll
t . (1)

T Hw
t and T H l

t are the aggregate times in period t where agents healthy but susceptible are
at work and in leisure activities respectively. T Iw

t and T Il
t are the aggregated times where

infected agents are at work and in leisure activities in period t, respectively. Note that these
aggregated numbers are the weighted sums of the total hours of time-constrained and un-
constrained agents. Moreover, mw(T Hw

t ,T Iw
t ) and ml(T H l

t ,T Il
t ) are the infection matching

functions for labor markets and leisure activities, respectively. They present the total number
of infectious meetings between healthy but susceptible agents and infected agents. Conse-
quently, we have that λt(Lw

t ,L
l
t) is strictly increasing in both arguments. This is the channel

that links time-constrained and unconstrained agents. That is, these two groups can meet at
work or at leisure time. The more time-constrained agents there are, the riskier it is for an un-
constrained agent to spend another hour outside.

3The motivation for these agents comes from the fact that some agents work in services deemed essential which
have continued to be supplied during the pandemic. Another fact is that some individuals are in occupations that
do not allow for remote working and have very little savings and wealth to rely on. These agents are similar to
hand-to-mouth agents, except that we assume that they can be quarantined and not work for some periods.
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Infected agents can either become sick or recover without ever developing symptoms. In-
fected agents who eventually recover without developing symptoms are classified as asymp-
tomatic. Infected agents who eventually develop symptoms are classified as symptomatic,
even though they may be pre-symptomatic at the moment. In order to simplify presentation
– once infection is no longer observed – we assume that at the time of infection the agent
may have received an unobserved shock that made him asymptomatic. The arrival rate of the
asymptomatic shock is γ > 0. We assume that until infected agents are either tested or de-
velop symptoms, they do not know that they have been infected (although they may have a
belief about it based on their time of exposure). Similarly, agents shown by test to be infected
will not know if they are symptomatic until they either develop symptoms or recover. We as-
sume that tested agents are followed by health professionals, so they observe their transition
to recovered, even if they are asymptomatic.

Infected agents who are not asymptomatic become sick with probability µ > 0. Sick agents
face a flow disutility of c < 0 and die at rate δt , which depends on the hospital capacity uti-
lization. Death is seen as a one-time negative shock equal to cd < 0. Agents leave the envi-
ronment once they are dead. We assume that δt = δ ( St

ICUt
) with δ ′( St

ICUt
) ≥ 0, i.e., we model

δt as a time-varying Poisson arrival rate that is weakly increasing in the ratio of sick agents
to ICU units, indicating that a busy hospital sector is less effective in keeping agents alive. At
this point, it is not clear that prior COVID-19 infection confers immunity. For simplification,
we assume that is the case and once the agent recovers, she develops immunity and cannot be
infected again.

Asymptomatic infected agents initially do not know that they have been infected. Infected
agents are tested with probability τ I

t > 0, which depends on the country’s testing capabilities.
We allow testing capabilities to vary over time. Asymptomatic infected agents recover at rate
θ̃ A > 0. Asymptomatic agents who recover without getting tested do not know that they have
acquired immunity. Consequently, they realize that they have developed immunity only if
they are tested for antibodies, which happens with probability τR

t > 0. Similarly to the virus
test, the antibody test arrival rate depends on the country’s testing capabilities, which may
vary over time. A graphical representation of the model is presented in Figure 3.

Notice that virus and antibody tests are important because they affect the time allocation de-
cisions of agents. In particular, we assume that infected agents who receive positive viral
tests are forced to stay at home, reducing the infection rate. On the other hand, agents who
receive a positive antibody test learn that they have developed immunity. Consequently, un-
constrained agents optimally adjust their time allocation, boosting their labor supply.
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B. Unconstrained agent’s problem

We start by considering agents who can optimally adjust their time allocation in order to max-
imize their utility while taking into account their infection risk. We assume that both infected
agents who tested positive in a viral test and sick agents are forced to stay home. Conse-
quently, we focus on the unconstrained agents’ decisions in the other states.

1. Known recovered unconstrained agent’s problem

We start by evaluating the optimal time allocation of recovered agents who know they have
developed immunity. Notice that this knowledge can be acquired in different ways: a.) agents
can recover from sickness; b.) agents can recover after testing positive in a viral test while
asymptomatic or; c.) agents can test positive in an antibody test. Regardless of the way in
which the knowledge about immunity is acquired, the agent is now free to optimally ad-
just her time allocation without fear of infection. Since the only time-varying features of the
model are related to the pandemic’s progress, a known recovered agent’s value function is
stationary.

An agent’s flow utility is given by U(c,Ll,Lh) = u(c)+h(Ll)+uh×Lh, where c is the amount
consumed of the numeraire good, Ll is the time spent in leisure activities, and Lh is the time
spent at home. We assume that u(·) and h(·) are both continuous, twice differentiable strictly
increasing concave functions. uh > 0 is a positive parameter that indicates the flow benefit of
staying home. It can also be seen as a parameter for home production.

Agents have no savings and no wealth endowments. Labor markets are perfectly competitive.
In particular, we follow Eichenbaum, Rebelo, and Trabandt (2020b), assuming a continuum
of competitive representative firms of unit measure that produce consumption goods using a
linear production function with hours worked as the sole input. As a result, c = wLw, where
w is the equilibrium wage rate and Lw the amount of time allocated to work. Similarly, we as-
sume that agents have a total time endowment of L hours per period. Consequently, we must
have that Lw +Ll +Lh = L and Li ≥ 0 for all i in {l,w,h}. Consequently, a known recovered
agent’s value function is given by:

RK =
u(w×LwK)+h(LlK)+uh× (L−LwK −LlK)

1−β
(2)
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From the optimal allocation of time, we have the F.O.C.s:

(LwK) : wu′(w×LwK)−uh = 0
(LlK) : h′(LlK)−uh = 0

Since u(·) and h(·) are invertible functions, assuming the parameter satisfy an interior solu-
tion, we have:

LwK =
1
w

u′−1
(uh

w

)
LlK = h′−1(uh) LhK = L− 1

w
u′−1

(uh
w

)
−h′−1(uh) (3)

where we use the subscript K for a known recovered agent.

2. Potentially susceptible unconstrained agent’s problem

We now focus on the problem of an agent who is potentially susceptible. In particular, once
infection is not observable, an agent cannot distinguish whether she is healthy but suscepti-
ble, infected with no positive viral test, or recovered with unknown immunity. Consequently,
in all of these states, an unconstrained agent’s time allocation must be the same. In order to
properly set up the agent’s time allocation problem, let us first present the agent’s Bellman
equations for each state. The Bellman equation for a healthy but susceptible agent at time t is:

Ht(Lw
t ,L

l
t ,L

h
t ) = u(wLw

t )+h(Ll
t)+uh×Lh

t +β

 λt(Ls
t ,L

l
t)

[
γIAU

t+1(L
w
t+1,L

l
t+1,L

h
t+1)

+(1− γ)ISU
t+1(L

w
t+1,L

l
t+1,L

h
t+1)

]
+[1−λt(Ls

t ,L
l
t)]Ht+1(Lw

t+1,L
l
t+1,L

h
t+1)

 (4)

where the flow utility is the same as the one described in Section III.B.1, β is the discount
rate, λt(Ls

t ,L
l
t) is the arrival rate of infection, γ is the probability of an asymptomatic infec-

tion, and IAU
t+1 and ISU

t+1 are the Bellman equations for the infected asymptomatic and eventu-
ally symptomatic agents, respectively. Since at this point the agent has neither received a viral
test nor developed symptoms, the infection is not yet known, which is represented by the sub-
script U . Notice that all of the Bellman equations in equation (4) are non-stationary because
transition rates change as the pandemic evolves.

We make a simplifying assumption that susceptible agents are not being tested for viral ge-
netic material or antibodies. Without this assumption, testing and the belief system could
interact in ways that would complicate the problem significantly. Moreover, studies point
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toward a significant rate of false negative results for both antibody and viral material tests.4

Consequently, for simplicity we assume that the arrival rate of test results is zero for healthy
but susceptible agents.

The Bellman equation for an infected asymptomatic agent without a viral test at time t is:

IAU
t (Lw

t ,L
l
t ,L

h
t ) = u(wLw

t )+h(Ll
t)+uh×Lh

t +β

{
τ I

t IAK
t+1 + θ̃ AU RU

t+1(L
w
t+1,L

l
t+1,L

h
t+1)

+[1− τ I
t − θ̃ AU ]IAU

t+1(L
w
t+1,L

l
t+1,L

h
t+1)

}
(5)

where the flow utility is the same as the one described in Section III.B.1, β is the discount
rate, τ I

t is the arrival rate of viral tests, IAK
t+1 the Bellman equation for an asymptomatic in-

fected agent with a positive viral test, θ̃ AU is the arrival rate of recovery, and RU
t+1 is the Bell-

man function for a recovered agent with unknown immunity. Notice that IAK
t+1 is not a function

of the time allocation, since agents with a positive viral test are required to stay home. So the
Bellman equation for an asymptomatic infected agent with a positive viral test at time t is
given by:

IAK
t = uh×L+β

{
θ̃ AK RK(LwK ,LlK ,LhK)+(1− θ̃ AK)IAK

t+1

}
(6)

where RK is the Bellman equation for a recovered agent with known immunity presented in
equation (2) and θ̃ AK is the arrival rate of recovery. Notice that this Bellman equation is sta-
tionary. Therefore IAK

t = IAK for every t.

The Bellman equation for an eventually symptomatic agent without a viral test at time t is:

ISU
t (Lw

t ,L
l
t ,L

h
t ) = u(wLw

t )+h(Ll
t)+uh×Lh

t +β

{
τ I

t ISK
t+1 +µU St+1

+[1− τ I
t −µ]ISU

t+1(L
w
t+1,L

l
t+1,L

h
t+1)

}
(7)

where the flow utility is the same as the one described in Section III.B.1, β is the discount
rate, τ I

t is the arrival rate of viral tests, ISK
t+1 the Bellman equation for an eventually sympto-

matic infected agent with a positive viral test, µU is the arrival rate of symptoms, and St+1

is the Bellman function. Similarly to IAK
t+1, ISK

t+1 and St+1 are not functions of time allocation,
since agents with either a positive viral test or symptoms are required to stay at home. Let’s
present these Bellman equations next. The Bellman equation for an eventually symptomatic
agent with a positive viral test at time t is:

ISK
t = uh×L+β

{
µKSt+1 +(1−µK)I

SK
t+1

}
(8)

4https://www.npr.org/sections/health-shots/2020/04/21/838794281/
study-raises-questions-about-false-negatives-from-quick-covid-19-test and https://www.scientificamerican.
com/article/what-covid-19-antibody-tests-can-and-cannot-tell-us/

https://www.npr.org/sections/health-shots/2020/04/21/838794281/study-raises-questions-about-false-negatives-from-quick-covid-19-test
https://www.npr.org/sections/health-shots/2020/04/21/838794281/study-raises-questions-about-false-negatives-from-quick-covid-19-test
https://www.scientificamerican.com/article/what-covid-19-antibody-tests-can-and-cannot-tell-us/
https://www.scientificamerican.com/article/what-covid-19-antibody-tests-can-and-cannot-tell-us/
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where µK is the arrival rate of symptoms. Differently from IAK
t , ISK

t is non-stationary, since as
we see below, St+1 depends on time. In particular, one’s outcome as a sick patient depends on
how overcrowded the health system is.

The Bellman equation for a sick agent in period t is given by:

St = uh×L− c+β
{

δt(−cD)+θ S
t RK(LwK ,LlK ,LhK)+

[
1−δt −θ S

t

]
St+1

}
(9)

where c is the flow cost of sickness, δt is the death arrival rate, cD is the one-time cost of
death before exiting the environment, θ S

t is the arrival rate of recovery, and RK is the Bell-
man equation for a recovered agent with known immunity presented in equation (2). Because
δt and θ S

t vary over time due to over-utilization of health services, St is non-stationary.

Finally, let’s consider the Bellman function for recovered agents with unknown immunity. In
this case, we have:

RU
t (L

w
t ,L

l
t ,L

h
t ) = u(wLw

t )+h(Ll
t)+uh×Lh

t +β

{
τR

t RK(LwK ,LlK ,LhK)

+
[
1− τR

t
]

RU
t+1(L

w
t+1,L

l
t+1,L

h
t+1)

}
(10)

where the flow utility is the same as the one described in Section III.B.1, β is the discount
rate, τR

t is the arrival rate of antibody tests, and RK is the Bellman equation for a recovered
agent with known immunity presented in equation (2).

Finally, we need to consider the optimal time allocation for potentially susceptible uncon-
strained agents. Notice that agents in the states healthy but susceptible, infected unknown
(both asymptomatic and eventually symptomatic), and recovered unknown do not know in
which state they actually are. Consequently, we have that agents in the states Ht , IAU

t , ISU
t and

RU
t solve the same time allocation problem:

max
Lw

t ,Ll
t ,Lh

t

πH
t Ht +π IA

t IAU
t +π IS

t ISU
t +πR

t RU
t (11)

subject to:
Lw

t +Ll
t +Lh

t = L (12)

where πH
t , π IA

t , π IS

t , and πR
t are the beliefs that a given agent is in one of these states. We as-

sume that, based on rational expectations and the focus on homogeneous solutions, these be-
liefs are based on an aggregate measure of workers in each one of these states. Consequently,
agents’ time allocation decisions take beliefs as given. Based on the solution of the potentially
susceptible agents presented in equations (11) and (12), we pin down optimal time allocation
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Lw∗
t , Ll∗

t , and Lh∗
t . In order to simplify notation, define λt = λt(Lw∗

t ,Ll∗
t ), i.e., λt is the rate of

infection, taking into account a possibly susceptible agent’s optimal time allocation.

Finally, we describe the laws of motion for unconstrained agents across the different states.
Define ht as the measure of unconstrained agents who are healthy but susceptible in period t.
Then, the change in the measure of healthy and susceptible agents between periods t and t +1
is given by:

ht+1 −ht =−λtht (LM1)

Notice that, in this case, since all recovered agents obtain immunity, the share of healthy but
susceptible agents only declines at infection rate λt . Similarly, define iAU

t as the measure of
unconstrained agents who are asymptomatic infected without a positive viral test. This mea-
sure varies between periods t and t +1 according to the following law of motion:

iAU
t+1 − iAU

t = λtγht −
(

θ̃ AU + τ I
t

)
iAU
t (LM2)

where λt is the infection rate, γ is the share of infections that will stay asymptomatic, θ̃ AU

is the rate at which untested asymptomatic agents recover, and τ I
t is the viral testing rate in

period t. Define iAK
t as the measure of unconstrained agents who are asymptomatic infected

with a positive viral test. This measure varies between periods t and t + 1 according to the
following law of motion:

iAK
t+1 − iAK

t = τ I
t iAU

t − θ̃ AU iAU
t (LM3)

where τ I
t is the viral testing rate in period t and θ̃ AK is the rate at which asymptomatic tested

agents recover. Moreover, define iSU
t as the measure of eventually symptomatic infected un-

constrained agents, that is the pre-symptomatic, without a positive viral test. This measure
varies between periods t and t +1 according to the law of motion:

iSU
t+1 − iSU

t = λt(1− γ)ht −
(
µU + τ I

t
)

iSU
t (LM4)

where λt is the infection rate, 1 − γ is the share of infections that will eventually become
symptomatic, τ I

t is the viral testing rate in period t, and µU is the rate at which untested even-
tually symptomatic agents become sick. Similarly, define iSK

t as the measure of infected pre-
symptomatic unconstrained agents with a positive viral test. This measure varies between
periods t and t +1 according to the following law of motion:

iSK
t+1 − iSK

t = τ I
t iSU

t −µKiSK
t (LM5)

where µK is the rate at which tested eventually symptomatic agents become sick. Then, de-
fine st as the measure of sick unconstrained agents in period t. This measure varies between
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periods t and t +1 according to the following law of motion:

st+1 − st = µU iSU
t +µKiSK

t −
(

δt +θ S
t

)
st (LM6)

where µK and µU are the rates at which tested and untested infected eventually symptomatic
unconstrained agents become sick, δt is the rate at which sick agents die, and θ S

t is the rate at
which sick patients recover.

Define rU
t as the measure of recovered unconstrained agents with unknown immunity in pe-

riod t. This measure varies between periods t and t +1 according to the following law of mo-
tion:

rU
t+1 − rU

t = θ̃ AU iAU
t − τR

t rU
t (LM7)

where θ̃ AU is the rate at which asymptomatic untested agents recover and τR
t is the antibody

testing rate in period t.We now consider the evolution of the measures of agents in the two
absorbing states. Define dt as the measure of dead unconstrained agents in period t. This mea-
sure evolves between periods t and t +1 according to the law of motion:

dt+1 −dt = δtst (LM8)

where δt is the rate at which sick agents die and st is the measure of sick unconstrained agents
in period t. Finally, define rK

t as the measure of unconstrained recovered agents with known
immunity. This measure evolves between periods t and t +1 according to the law of motion:

rK
t+1 − rK

t = θ S
t st + τR

t rU
t (LM9)

where θ S
t is the rate at which sick patients recover, st is the measure of sick agents in period

t, τR
t is the antibody testing rate in period t, and rU

t is the measure of recovered unconstrained
agents with unknown immunity in period t.

C. Time-constrained agents

We now consider the case of agents who cannot optimally adjust their time allocation based
on the risk of infection. We assume that these agents cannot avoid participating in economic
activities either because they perform essential services or because of financial constraints.
We call these agents time-constrained and identify them by a subscript c. In order to simplify
our calculations, we assume that, whenever these agents are not quarantined due to known
infection or sickness, their time allocation follows the optimal choices presented by agents
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who knowingly recovered from COVID-19, as presented in Section III.B.1. Consequently,
from equation (3), we have that:

Lw
C,t =

1
w

u′−1
(uh

w

)
Ll

C,t = h′−1(uh) Lh
C,t = L− 1

w
u′−1

(uh
w

)
−h′−1(uh) (13)

Notice that, differently from the case of known recovered agents, we keep these measures
of time allocation time dependent. The reason for that is that susceptible and infected time-
constrained agents can still become sick or test positive in a viral test, thereby being forced to
quarantine. In these cases, Lh

C,t = L.

We define λC
t as the time-constrained agents’ infection rate in period t, its functional form

is similar to that of the unconstrained agents, but it is either zero, when the time-constrained
agents are sick or quarantined at home, or:

λC
t (T Hw

t ,T Iw
t ) =

mw(T Hw
t ,T Iw

t )

T Hw
t

Lw
C,t +

ml(T Hw
t ,T Iw)

T H l
t

Ll
C,t (14)

where T Hw
t , T Iw

t , T H l
t , and T Il

t are the aggregated total amount of time healthy but suscep-
tible and infected agents spend working and in leisure activities outside in period t, respec-
tively. Notice that λC

t ≥ λt , since time-constrained agents’ time allocation does not take into
account the risk of infection.

Since time-constrained agents make no decisions, we are now able to present their Bellman
equations. The Bellman equation for healthy but susceptible time-constrained agents is:

HC,t = u(w×Lw
C,t)+h(Ll

C,t)+uh×Lh
C,t +β

{
λC

t

[
γIAU

C,t+1 +(1− γ)ISU
C,t+1

]
+
(
1−λC

t
)

HC,t+1

}
(15)

where the flow utility is the same as the one described in Section III.B.1, β is the discount
rate, λC

t is the arrival rate of infection, γ is the probability of an asymptomatic infection, and
IAU
C,t+1 and ISU

C,t+1 are the Bellman equations for the untested infected asymptomatic and even-
tually symptomatic time-constrained agents, respectively.

The Bellman equation for an infected asymptomatic time-constrained agent without a viral
test at time t is:

IAU
C,t = u(w×Lw

C,t)+h(Ll
C,t)+uh×Lh

C,t +β
{

τ I
t IAK

C,t+1 + θ̃ AU RU
C,t+1 +[1− τ I

t − θ̃ AU ]IAU
C

}
(16)
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where the flow utility is the same as the one described in Section III.B.1, β is the discount
rate, τ I

t is the arrival rate of viral tests, IAK
C,t+1 is the Bellman equation for an asymptomatic

infected time-constrained agent with a positive viral test, θ̃ AU is the arrival rate of recovery,
and RU

C is the Bellman function for a recovered time-constrained agent with unknown immu-
nity. Notice that RU

C is not time dependent, since recovered agents will never become infected
again and time-constrained agents do not adjust their time allocation based on the knowledge
of immunity. Consequently, RU

C = RK
C = RK . Similarly, notice that IAK

C is not a function of
the time allocation as well, since agents with a positive viral test are required to stay home.
So the Bellman equation for an asymptomatic infected time-constrained agent with a positive
viral test at time t is given by:

IAK
C = u(b)+uh×L+β

{
θ̃ AK RK +(1− θ̃ AK)IAK

C

}
(17)

where RK is the Bellman equation for a recovered agent with known immunity presented in
equation (2) and θ̃ AK is the arrival rate of recovery. Notice that this Bellman equation is sta-
tionary.

The Bellman equation for an eventually symptomatic time-constrained agent without a viral
test at time t is:

ISU
C,t = u(w×Lw

C,t)+h(Ll
C,t)+uh×Lh

C,t +β
{

τ I
t ISK

C,t+1 +µU SC,t+1 +[1− τ I
t −µU ]I

SU
C,t+1

}
(18)

where the flow utility is the same as the one described in Section III.B.1, β is the discount
rate, τ I

t is the arrival rate of viral tests, ISK
C,t+1 is the Bellman equation for an eventually symp-

tomatic infected time-constrained agent with a positive viral test, µU is the arrival rate of
symptoms, and SC,t+1 is the Bellman function of a sick time-constrained agent. Similarly to
IAK
C , ISK

C,t+1 and SC,t+1 are not functions of the time allocation, since agents with either a pos-
itive viral test or symptoms are required to stay at home. Let us present these Bellman equa-
tions next. The Bellman equation for an eventually symptomatic time-constrained agent with
a positive viral test at time t is:

ISK
C,t = u(b)+uh×L+β

{
µKSC,t+1 +(1−µK)I

SK
C,t+1

}
(19)

where µK is the arrival rate of symptoms. Differently from IAK
C , ISK

t is non-stationary, since as
we see below, SC,t+1 depends on time. In particular, one’s outcome as a sick patient depends
on how overcrowded the health system is.
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The Bellman equation for a sick agent in period t is given by:

SC,t = u(b)+uh×L− cS +β
{

δt(−cD)+θ S
t RK

C,t +[1−δt −θ S
t ]SC,t+1

}
(20)

where c is the flow cost of sickness, δt is the death arrival rate, cD is the one-time cost of
death before exiting the environment, θ S

t is the arrival rate of recovery, and RK is the Bell-
man equation for a recovered agent with known immunity presented in equation (2). Because
δt and θ S

t vary over time due to over-utilization of health services, St is non-stationary.

As mentioned before, once time-constrained agents do not adjust their hours based on the risk
of infection, we have that RU

C,t = RK
C,t = RK

C = RK , where RK is presented in equation (2), i.e.:

RU
C,t = RK

C,t = RK
C = RK =

u(w×Lw
C,t)+h(Ll

C,t)+uh×Lh
C,t

1−β
(21)

Finally, the laws of motion for time-constrained agents follow a pattern very similar to that of
the unconstrained agents, but replacing the infection rate λt with λC

t . Consequently, equations
(LM1) – (LM9) can be rewritten for the case of time-constrained agents as:

hC,t+1 −hC,t =−λC
t hC,t (LMC

1 )

iAU
C,t+1 − iAU

C,t = λC
t γhC,t −

(
θ̃ AU + τ I

t
)

iAU
C,t (LMC

2 )

iAK
C,t+1 − iAK

C,t = τ I
t iAU

C,t − θ̃ AU iAU
C,t (LMC

3 )

iSU
C,t+1 − iSU

C,t = λC
t (1− γ)hC,t −

(
µU + τ I

t
)

iSU
C,t (LMC

4 )

iSK
C,t+1 − iSK

C,t = τ I
t iSU

C,t −µKiSK
C,t (LMC

5 )

sC,t+1 − sC,t = µU iSU
C,t +µKiSK

C,t −
(
δt +θ S

t
)

sC,t (LMC
6 )

rU
C,t+1 − rU

C,t = θ̃ AU iAU
C,t − τR

t rU
C,t (LMC

7 )

dC,t+1 −dC,t = δtsC,t (LMC
8 )

rK
C,t+1 − rK

C,t = θ S
t sC,t + τR

t rU
C,t (LMC

9 )

D. Equilibrium

A rational-expectations equilibrium in this economy with an initial measure of agents n con-
sists of a sequence of infection rates for unconstrained agents {λt}t≥0 such that at every pe-
riod:

1. Potentially susceptible unconstrained agents optimally solve their time allocation prob-
lem presented in equations (11) and (12);
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2. Known recovered unconstrained agents optimally solve their time allocation problem
presented in equation (2)

3. Resulting laws of motion (LM1) – (LM9) and (LMC
1 ) – (LMC

9 ) give rise to the sequence
of infection rates {λt}t≥0.

Given rational expectations, the beliefs of time-constrained agents and the objective probabil-
ities of different health states coincide:

ht

ht + iAU
t + iSU

t + rU
t
= πH

t , (22)

iAU
t

ht + iAU
t + iSU

t + rU
t
= π IA

t , (23)

iSU
t

ht + iAU
t + iSU

t + rU
t
= π IS

t , (24)

rU
t

ht + iAU
t + iSU

t + rU
t
= πR

t . (25)

We use a time-stacking algorithm using the sparsity of the Jacobian blocks in a gradient-
based method to solve for the equilibrium paths of all endogenous variables for t = 0, ...,500.

IV. QUANTITATIVE ANALYSIS

A. Taking the model to the data

We now must impose functional forms in order to calibrate the model presented in Section
III. In particular, in the calibrated model, we assume the following separable utility function:

U(c,Ll,Lh) = α ln(1+ c)+(1−α) ln(1+Ll)+uh ×Lh (26)

while the restrictions on time allocation are the same as the ones presented in Section III (c =
wLw, Lw +Ll +Lh = L, and Li ≥ 0 for all i in {l,w,h}).

Moreover, borrowing from the labor economics literature (see Petrongolo and Pissarides
(2001)), we consider Cobb-Douglas matching functions. Therefore, the number of infections
due to workplace interactions is given by:

mw(T Hw
t ,T IUw

t ) = Aw (T Hw
t )

ζ
(

T IUw
t

)1−ζ
(27)
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where T Hw
t = hC,tLw

C,t + htLw
t is the total number of hours spent at work by healthy but sus-

ceptible agents. Notice that this measure depends on the measure of time-constrained and
unconstrained susceptible agents – hC,t and ht , respectively – and the number of hours spent
at work by each group (Lw

C,t and Lw
t ). Similarly, T IUw

t = (iAU
t + iSU

t )Lw
t + (iAU

C,t + iSU
C,t)L

w
C,t is

the total number of hours spent at work by infected agents who have neither been tested nor
developed symptoms. Aw and zeta are parameters to be calibrated.

Similarly, the number of infections due to leisure activities is given by:

ml(T H l
t ,T IUl

t ) = Al

(
T H l

t

)χ (
T IUl

t

)1−χ
(28)

where T H l
t = hC,tLl

C,t + htLl
t is the total number of hours spent at leisure activities by healthy

but susceptible agents. Notice that this measure depends on the measure of time-constrained
and unconstrained susceptible agents – hC,t and ht , respectively – and the number of hours at
leisure activities by each group (Ll

C,t and Ll
t ). Similarly, T IUl

t = (iAU
t + iSU

t )Ll
t +(iAU

C,t + iSU
C,t)L

l
C,t

is the total number of hours spent at leisure by infected agents who have neither been tested
nor developed symptoms. Al and χ are parameters to be calibrated. They are allowed to be
different for different agents.

Finally, given the constant returns to scale in the matching functions, we can calculate the rate
of infection per unit of time exposed at work and in leisure activities respectively as:

ms(T HUs
t ,T IUs

t )

T Hs
t

= As

(
T IUs

t

T Hs
t

)1−ζ

= As

(
iUt
ht

)1−ζ

and
ml(T HUl

t ,T IUl
t )

T H l
t

= Al

(
T IUl

t

T H l
t

)1−χ

= Al

(
iUt
ht

)1−χ

B. Parameter values

Our choice of parameters broadly follows the recent literature modeling the transmission of
the COVID-19 virus. As discussed in other papers, there is large uncertainty on the true value
of these parameters, but the analysis showed in the quantitative results section is qualitatively
very similar for a range of different parameter choices.

The model is calibrated so that a time period is one week. We assume that it takes an average
14 days to either recover or die from the infection – that is θ S + δ = 7/14. The parameter
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µ is calculated so that the incubation period is around 10 days. The death rate comes from a
version of Fernández-Villaverde and Jones (2020) and matches early serology tests in Heins-
berg, Germany and Iceland. Since recent evidence suggests that the mortality rate might be
higher, we will report robustness results using death rates of 1 percent. We also consider the
case in which death rates may depend on the ICU occupancy rate in Section V.H. The fraction
of asymptomatic agents, 50 percent, also comes from Iceland in a study of voluntary screen-
ing.5 The value of death, cd , was calculated as the present value of the loss of future income
discounted by β as chosen in Eichenbaum, Rebelo, and Trabandt (2020b). The number of
people who are initially infected, e, is set to 0.001.

The initial population and the wage rate are normalized to one. The fraction of time-constrained
agents, 30 percent, is initially calibrated as in Laxton and others (2010),6 but different values
are also used in the simulations to mimic developing economies. We set the parameters in the
utility function, uh and α , so that the steady-state time spent at home, at work and in outside
leisure activities matches the data in the American Time Use Survey, compiled by the Census
Bureau. Finally, the parameters in the matching function are calibrated so that the number of
infected agents approaches zero after two years.

V. QUANTITATIVE RESULTS

A. Testing and its effects on the epidemic and the economy

Our model predicts large health and economic benefits from increasing testing. The model
simulation results for an economy without testing and with testing are depicted in Figure
4. The solid line is for the economy without testing, the dashed line represents the economy
when 10 percent of infected persons and the same percentage of persons who recovered with-
out ever knowing they were infected are tested per week (so we adjust both τI and τR)7. As
also reported in Eichenbaum, Rebelo, and Trabandt (2020b), the economic results with and
without testing are qualitatively similar. However, with the level of testing set as in our bench-
mark model calibration, the US would be able to reduce the number of deaths by more than
60,000 compared to a situation where no tests were conducted by the end of the second year

5https://nordiclifescience.org/COVID-19-first-results-of-the-voluntary-screening-in-iceland/
6Note that Laxton and others (2010) call this the OLG households.
7The 10 percent figure was picked based on evidence from serology tests which show that only 1 in 10 cases of

COVID-19 is confirmed by testing in many countries
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(Figure 4d). Additionally, by the end of the second year, the cumulative gain with this level of
testing would be around 3.4 percent of GDP (Figure 4a).

There are two channels through which these proposed tests affect the economy in our model.
The first, which we call the stop spreading channel, operates by changing the epidemics’ dy-
namics. Early testing removes infected agents from contact with susceptible people. The more
infected people are removed from contact, the less infection occurs (see Figure 4b), reducing
the number of sick and dead people as shown in Figures 4c and 4d, respectively.

This channel affects the economy through two mechanisms. First, infected people are re-
quired to quarantine after receiving a positive test, even if they are asymptomatic. This has a
negative effect on the labor supply. On the other hand, unconstrained agents who are unaware
of their health status choose a higher labor supply when tests are available, because there is
less risk of getting infected once more infected people are removed from the labor force. The
second effect is larger than the first effect, so tests are net positive to GDP. This channel is
also found in Eichenbaum, Rebelo, and Trabandt (2020b) and Brotherhood and others (2020).

The second channel, which we call the information channel, operates purely by providing
better information to agents. Some agents do not behave optimally due to a lack of informa-
tion about their health status. For example, agents who recovered without ever knowing they
were infected behave as if they were still possibly susceptible when deciding their labor sup-
ply. Consequently, their labor supply choices are identical to those of healthy but susceptible
agents, as well as untested asymptomatic and pre-symptomatic infected agents. Testing for
antibodies in unknowingly recovered agents boosts economic outcomes without affecting the
epidemics’ dynamics, a result that allows us to separate this channel from the previously stud-
ied ones.

We can partially isolate the effects of this information channel to measure its importance.
Figure 5 compares the model in the absence of testing with a model in which antibody tests
are substantially scaled-up (the τR is increased from 0 percent to about 5 percent). This is the
policy being floated for the post-lockdown period in many countries. As mentioned, this pol-
icy has minimal effects on the virus dynamics (see Figures 5b, 5c, and 5d), but it has a posi-
tive impact on GDP through the higher labor supply from the agents who recovered without
ever knowing they were infected (Figure 5a). The cumulative output gain from this policy af-
ter two years is worth 0.1 percent of GDP. Note, however, that this policy does not fully cap-
ture the information channel in our model, as the viral test also reveals the virus to infected
people, allowing them to behave optimally after they have recovered.
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B. What if the proportion of asymptomatic cases was different?

The fraction of asymptomatic cases remains uncertain, and robustness in this parameter, the
γ in the model description, is warranted. We picked our benchmark calibration of the share
of asymptomatic people based on mass testing results conducted in Iceland. However, there
is large uncertainty about how many asymptomatic cases there are and about the role of the
asymptomatic in transmitting the virus. Thus, it is interesting to check how the epidemic’s
dynamics change as we move between the extremes in incidences of asymptomatic cases,
from 80 percent to just 20 percent of all cases. The exercise is conducted so that the expected
death from the virus for a susceptible agent is the same. That is, we adjust the mortality rate,
the δ in the model, upward (downward) for the case of more (fewer) asymptomatic cases.
If we do not adjust for the δ , the mortality rate would be lower for the instance with more
asymptomatic cases. We want to focus here on the role of asymptomatic cases given the same
expected mortality. In Section V.F, we discuss the role of different mortality levels.8

There are multiple channels through which asymptomatic cases can change an epidemic. On
the one hand, having more asymptomatic cases means that people will get less sick, which
increases the utility of infected agents. Thus, agents would be less afraid of contracting the
virus and could spend more time outside. This channel is therefore positive for the econ-
omy but it could lead to more deaths. On the other hand, asymptomatic individuals remain in
contact with susceptible ones for longer, since symptomatic cases are assumed to stay home
while sick, and it takes less time to get sick than it takes to recover from the virus. This fur-
ther exposure increases the speed and reach of the epidemic. As the virus reaches a higher
fraction of the population, unconstrained agents cut their time spent outside, which is bad for
the economy but could reduce overall deaths. Finally, more individuals recover without ever
knowing they were infected, and behave as if they were still susceptible. This latter effect
would increase and prolong the economic costs of the virus.

These multiple channels act in opposite directions, but our results indicate that the virus is
more widespread and more people die when the number of asymptomatic cases is larger.
Figure 6 depicts these two more extreme calibrations for asymptomatic cases. The peak of
infections and the total number of people ever infected are higher when there is a higher frac-
tion of asymptomatic cases (Figure 6b). The overall death count ends up being higher because
a lot more people get infected (Figure 6d).
8Note that it has been discussed that the mortality rate from COVID-19 could be lower if there are many

asymptomatic cases that have not captured by tests. This is a different point from what we propose here. In our
case, we set the mortality rate by calibration, which can be chosen independently from the level of asymptomatic
cases, which is another calibration choice.
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With respect to the economic effects, the fraction of asymptomatic cases is very important
to the current discussion about the depth and shape of the recovery (see Figure 6a). The eco-
nomic effects at the beginning of the epidemic are somewhat similar for both calibrations,
but after 10 weeks the recession is substantially deeper when there are more asymptomatic
cases and the virus is more widespread. Time unconstrained agents restrict their labor sup-
ply by a lot more in response to the swift transmission of the virus. That is, even though there
are fewer people getting sick, becoming infected is is so much more likely that these agents
choose to stay home for a higher share of their time. This large response of households to
riskier environments was also seen in ?, where the response also peaks concomitantly with
the number of infected agents. Note that this result depends on the assumption that the virus
is equally infectious for symptomatic and asymptomatic individuals and on the assumption
that sick people stay at home. However, after reaching the bottom of economic activity around
40 weeks, the economy starts to rebound and form more of a V shaped recovery when the
number of asymptomatic cases is higher. That is, the recession is milder but also more pro-
longed if the epidemic features fewer asymptomatic cases. The prolonged recession is a byprod-
uct of the slower transmission of the virus per period.

Given the difference in importance of information in the two calibrations, it is interesting to
measure how much more valuable testing is for these different situations. Figure 7 replicates
the exercise of the previous section, comparing an economy with no testing to one in which
10 percent of infected patients get tested, but with these two different calibrations for the
asymptomatic. After two years, the cumulative GDP gain is of 1.8 percentage points when
there are just a few asymptomatic cases compared to around 6.3 percentage points when there
are more asymptomatic individuals.

C. Effects of the epidemic for different agents

So far, we have analyzed the epidemic using only the aggregated numbers, but the hetero-
geneity between the two groups of households is striking and helps to explain the overall dy-
namic.

It is expected that the virus would impact time-constrained agents more than unconstrained
ones. Time-constrained agents cannot afford to miss work and therefore are not able to reduce
their time spent outside the house to lower their exposure to the virus. This is what is seen in
Figure 8, which presents the same set of variables as shown before for the benchmark calibra-
tion, but it breaks down the dynamics for the different groups of households.
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However, the difference in the incidence of infection by the end of the epidemic is remark-
able. While less than 13 percent of the time unconstrained agents ever get infected by the
virus, almost 60 percent of the time-constrained agents get infected at some point in the two
years (Figure 8a). This is also reflected in the number of deaths, where only 0.03 percent of
the unconstrained agents die compared to 0.12 percent of the time-constrained agents (Figure
8b). These numbers suggest that the greatest burden of the epidemic will be borne by the
time-constrained agents. The unconstrained agents, knowing that the time-constrained agents
will not change their behavior, choose to lower their outside exposure even more and mini-
mize their health losses.

D. An economy with a larger fraction of time-constrained agents

A natural extension is to ask what would happen in an economy where the fraction of time-
constrained agents is larger, which can be a better approximation of many emerging and poor
economies. Figure 9 shows the same variables but when 50 percent of the agents are time-
constrained (in contrast to the 30 percent of the benchmark calibration), a calibration chosen
in Laxton and others (2010) for emerging markets.

The effects of the epidemic in this context are dire, as could be expected from the previous
discussion. Results are presented in Figure 9. The peak of the epidemic is reached sooner, at
34 weeks, compared to 42 weeks in the benchmark calibration. The epidemic quickly passes:
almost all infections take place in the first year. The total infected peak is at 2.9 percent of the
total population, compared to less than 1 percent in the benchmark (Figure 9b). Around 85
percent of time-constrained agents get infected at some point and 0.18 percent die (Figures
10a and 10b). Meanwhile, a little over 21 percent of the unconstrained agents get ever in-
fected and less than 0.05 percent of them die.

Even if health systems were as good in emerging markets as they are in advanced economies,
poorer economies would be more severely affected by this epidemic according to our model
predictions. This result is just a consequence of the existence of a larger share of agents who
are less able to take precautions to minimize exposure to the virus.

The economic effects in a poorer economy are also massive. At first, one might think that the
effects would be milder as there are more individuals behaving as they would in normal times
during the epidemic. However, since the virus is so much more widespread, the risk of stay-
ing outside is substantially larger for the unconstrained agents. In turn, these agents reduce
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their time spent outside and their labor supply to an even larger degree, which more than off-
sets the higher labor supply from time-constrained workers. Consequently, GDP effects are
significantly larger in economies with a larger share of time-constrained workers (see Figure
9a).

The poorer economy faces a deeper recession and substantially larger cumulative output
losses. While GDP bottoms out at about -8.7 percent in the benchmark calibration, it reaches
over -19 percent in this alternative calibration. While the economic effects are much more
severe, the recovery is also much faster and V-shaped. After one year, the level of GDP per
capita in the economy with a larger share of time-constrained workers is higher than in the
benchmark calibration, which experiences a shallower but more prolonged recession. Finally,
even with the faster recovery, the present value of cumulative losses is about 3.7 percent of
GDP for the economy with more time-constrained agents. Not only is the health situation
dire, but also the economic losses are larger (Figure 9a).

E. Testing when the fraction of time-constrained agents is larger

Given the larger cost for economies with a higher fraction of time-constrained agents, it is in-
teresting to study how the testing policy affects epidemiologic and economic outcomes com-
pared to in our benchmark model. Figure 11 plots the same variables we have been plotting,
but when the fraction of time-constrained agents is 50 percent of the population. We do the
same exercise as before and adjust both τI and τR.

Testing is more effective in changing the speed of health outcomes when there are more time-
constrained agents. In terms of infections, they peak about the same time, but testing reduces
the peak value by almost 1.5 percentage points, compared to less than 0.5 percentage points
in the benchmark model (Figure 11b). When more testing is available, fewer people are in-
fected at the beginning of the epidemic, but at the end of the epidemic, fewer people ever get
infected in the benchmark calibration. In terms of deaths, testing saves substantially more
lives in the first year of the epidemic, around 30,000, in the higher time-constrained calibra-
tion, but by the end of the epidemic, testing saves around 14,000 more lives in the benchmark
calibration (Figure 11d). In sum, testing affects the speed, hence the lower death count in
the first year, but not the overall final health outcomes when the fraction of time-constrained
agents is larger. By the second year, most of the time-constrained workers are already im-
mune in the alternative calibration, which lowers testing effectiveness in influencing the epi-
demic’s dynamics.
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By lowering the speed of the epidemic, testing is also very effective in lowering the economic
costs in the economy with more time-constrained agents. While the economy bottoms out
with a drop in output of about 19 percentage points below the steady state without testing, it
falls by 13 percentage points with testing (Figure 11a). The reason for this is similar to what
we discussed before. Testing reduces the speed and in turn the number of interactions be-
tween infected and susceptible persons. With less risk of infection, unconstrained people are
willing to spend more time outside and supply more labor. Output starts to diminish more in
the economy without testing at around 20 weeks, but after 60 weeks, GDP per capita is about
the same. On the other hand, the improvement in GDP with testing is milder in the bench-
mark calibration, but output is above the no-testing case for much longer. By the end of the
first year, testing improves GDP by 2.8 percentage points in the calibration with a higher frac-
tion of time-constrained agents compared with an improvement of 1.9 percentage points in
the benchmark calibration. This shows that testing pays off even more in the context of poorer
economies at the onset of the epidemic.

F. What if mortality is higher?

There is a large uncertainty about the case mortality rate of COVID-19. Different countries
will also eventually have different mortality rates because of variation in demographic struc-
tures and hospitals’ technical and physical capacities. All these reasons motivate the discus-
sion of the sensitivity of our model results to this parameter.

Case mortality rate was initially thought to be as high as 3.4 percent. Some serology tests
suggested that it could be as low as 0.3 percent and Fernández-Villaverde and Jones (2020)
think that it could be between 0.8 percent and 1.2 percent. Figure 12 presents the results when
the case mortality rate is 1 percent and compares it with the benchmark δ calibration.

The epidemiologic dynamic is qualitatively similar, but the peak of infections is lower when
mortality is higher (Figure 12a). The case mortality rate per se should not impact the number
of infections, since in our model it does not affect the time during which one is infectious.
However, when the case mortality rate is higher, unconstrained agents would be even more
careful in their activities outside the home, which lowers the possibility of a match between
susceptible and infected agents. While high mortality rate, by definition, implies that more
infected people would die, more careful agents would lower the number of infections. In our
calibration, the first effect is larger, and about 300,000 more people would die in the US after
two years (Figure 12d). It is interesting to note that the initial phase of the epidemic is iden-
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tical regardless of the assumed mortality, a result also discussed in Fernández-Villaverde and
Jones (2020). The epidemic’s paths only start to diverge around week 37 and peak at exactly
the same time at week 42. However, the peak is lower when the mortality rate is higher. At
the end of the second year, slightly fewer people get ever infected when mortality is higher, as
expected.

The economic impact of higher mortality is dramatic and the maximum difference in out-
put coincides with the peak of the epidemic. Similar to the case when the fraction of time-
constrained agents is larger, a higher mortality rate implies that it is riskier to engage in out-
side activities. For the first 20 weeks of the epidemic, labor supply by unconstrained agents is
about the same. As the number of infected workers increases, engaging in outside activities
is riskier, and unconstrained agents cut their labor supply by more when mortality is higher.
At the trough, labor supply drops by more than 35 percent, compared to less than 15 percent
in the benchmark calibration. Overall, the economic difference is massive (Figure 12a). In
the first year, GDP per capita falls by 12.5 percentage points when mortality is higher com-
pared to 4.8 percentage points in the benchmark calibration. Similar to the case with more
time-constrained agents, testing is more effective in smoothing the GDP contraction when
mortality is higher. The reason is similar to before: testing reduces the speed of the epidemic
and encourages unconstrained people to work more.

G. Government-enforced lockdown

Governments around the world used lockdowns as the first line of response to the epidemic.
With very few exceptions, lockdowns and mass testing were the chosen tools to delay the
speed of the epidemic. This sub-section analyzes the impact of two different lockdown strate-
gies, varying in intensity and duration.

A lockdown could be comprehensive and short, (lockdown A) or mild and long (lockdown
B). We have seen countries adopt these two strategies which motivates our policy design sce-
narios. Following Brotherhood and others (2020), we propose a short and overarching lock-
down in which all agents are forced to shelter at home for no less than an extra 25 percent of
their time for one month, and another in which all agents are mandated to shelter at home for
no less than an extra 10 percent of their time, but for 26 weeks.9

9We assume that the lockdown starts in the 11th week of the epidemic.
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Lockdowns slow the epidemic in the first year but have almost no effect by the end of the
second year. This dynamic can be seen in Figure 14b and is similar to the findings in Broth-
erhood and others (2020). The peak in infections is quite similar, but it is delayed by a few
weeks with the lockdowns. In the first year 11,400 and 9,500 lives are saved by lockdowns A
and B, respectively. By the end of the second year, the difference is less than 5,000 (Figure
14d). The number of lives saved might small, but it is important to highlight that the counter-
factual is our benchmark calibration model, in which agents independently reduce their time
spent outside to avoid infection.

Without further measures, the extra recession generated by the lockdowns also disappears in
the second year (Figure 14a). By design, all agents are forced to stay home during the lock-
down, which explains the extra recession. But the effects on the economy are reduced because
when agents are allowed to make decisions optimally, they choose to spend more time out-
side than they would have chosen without the lockdown (Figure 16). From the moment that
the lockdown is lifted until the end of the second year, unconstrained agents always choose
to be spend more time outside than they would have in a situation in which no lockdown was
ever imposed. The time spent during the lockdown becomes irrelevant for levels of GDP per
capita by the end of the second year, but accumulated losses are never recovered. Overall,
GDP growth in the first year falls by 5.5 percentage points and 6.6 percentage points below
the pre-epidemic steady-state values in lockdown A and B, respectively. This compares with
a contraction of around 4 percentage points in the benchmark model. That is, the cost per life
is around $26 million and $54 million in lockdowns A and B, respectively. Once again, the
counterfactual used to calculate the cost per life is our benchmark model and not a scenario in
which people are not careful at all. For example, if we use as a counterfactual our calibrated
model, but assume that unconstrained agents do not change their behavior at all, then lock-
down B would be responsible for saving 325,000 lives at a cost of $ 2.5 million.

A scenario in which people are less careful can be approximated by an economy with a larger
share of time-constrained agents. Our model predicts that the cost per life is more favorable
for this type of economy. The explanation for this result has to do again with the counterfac-
tual we are comparing it to. We saw that an economy with more time-constrained agents has
worse GDP and death outcomes in the first year. When a lockdown is imposed in this econ-
omy, the environment becomes relatively safer for the unconstrained agents, who respond
with a significantly less negative labor supply after the lockdown is lifted (Figure 17).

A long government-mandated lockdown becomes ineffective for unconstrained agents. In
the economy with a larger share of time-constrained agents, lockdown B becomes irrelevant
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for unconstrained agents after week 24, as they voluntarily choose to stay home for longer
hours than mandated by the government (Figure 17). By becoming ineffective in changing the
choices of part of the population, this lockdown is also less damaging to the economy.

The lockdown strategy is more cost effective in poorer economies because it is marginally
less damaging to the economy and more efficient in slowing the speed of the epidemic. The
number of lives saved at the beginning of the epidemic with the lockdown more than offsets
the higher deaths after the lockdown is lifted, resulting in more lives saved after one year.
Overall, almost 17,000 lives are saved in lockdown B after the first year. Meanwhile, av-
erage GDP falls by around 10 percentage points in the first year compared to a contraction
of 8.6 percentage points if no lockdown is imposed. (Figure 16a). More lives are saved at a
lower marginal cost and the cost per life in lockdown B is around $14 million, which is less
than half of the cost per life of the same lockdown imposed in an economy with more uncon-
strained agents.

H. Effectiveness of lockdowns when health systems may collapse

One important argument used in the defense of lockdowns is that the health systems would
collapse absent strong government-enforced lockdowns. The idea is that the virus is so con-
tagious that the health systems would quickly become flooded with new hospitalizations and
more people would die due to inadequate lack of medical attention. This last model extension
tries to incorporate the benefits of "flattening the curve" by assuming that the death rate is a
time-varying Poisson arrival rate that is increasing in the ratio of sick agents per ICU unit.

In particular, we assume that δt = δ + ( Hot
ICUt

)2 1
K , where δ is the mortality rate in the case

where no physical constraint is considered, Hot is the number of hospitalizations, ICUt is the
number of ICU beds, and K is a constant used for calibration. For δ , we use our benchmark
calibration. For the number of hospitalizations, we assume that 20 percent of sick people need
to be hospitalized and 5 percent of them would require ICU treatment. For the number of ICU
beds, we follow McCarthy (2020) and assume 34.7 beds per 100,000 inhabitants.10 Finally,
we calibrate K so that the probability of dying is four times larger than in the benchmark at
the peak of the epidemic. For this calibration, we use information from Lombardy in Italy, a
region highly affected by the epidemic. The mortality rate there was 70 percent higher than

10Source is National Center for Biology Information, Intensive Care Medicine,
https://www.statista.com/chart/21105/number-of-critical-care-beds-per-100000-inhabitants/
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the rest of Italy and 2.85 times larger than in Veneto, a region in Italy that controlled the epi-
demic early on Odone and others (2020).

Strains on the health system improve the cost-per-life of lockdowns, but also affect the coun-
terfactual of no policy action. When accounting for the higher mortality, lockdowns A and
B would be able to reduce first-year deaths by 15,000 and 16,000, respectively (Figure 18d).
This number is not substantially higher than in the previous section because the additional
strains on the health system also affect the behavior of unconstrained agents. If agents know
that the probability of dying depends on the level of ICU hospitalizations, they would be
more careful in engaging in outside activities even without a government-mandated lock-
down, especially at the peak of the epidemic (Figure 19). The additional deaths from hospi-
tal constraints and this endogenous more careful response almost offset each other, and the
number of lives saved by the lockdowns is not substantially larger than if those physical con-
straints were not considered.

On the other hand, this more prudent behavior also leads to more economic costs both in the
economies with and without lockdowns. With strained health systems, the economy contracts
by 5.6 percentage points without the lockdown and by 6.5 percentage points and 7.7 percent-
age points in lockdowns A and B (Figure 18a). Overall, the cost per life is indeed lower in
this case, totaling $13.4 million and $27.7 million in lockdowns A and B, respectively, which
is still somewhat larger than the ones obtained in the literature.

VI. CONCLUSION

The invisible threats that any epidemics pose are amplified when people do not know their
health status. Information is always valuable, but even more so in a context where a large
fraction of infections are asymptomatic.

Moreover, not everyone has the choice of foregoing income to avoid a viral infection in which
the probability of survival is high. This heterogeneity of choices has deep implications for
both the speed and reach of the epidemic, and the incidence of the disease.

In this paper, we proposed a framework to study these issues that have been largely ignored
by the literature. We enriched a standard epidemiology model with optimal and heteroge-
neous economic choices and calibrated it to investigate stylized policy interventions such as
a lockdowns and testing. We also discussed how these policies perform when the economic
context or the characteristics of the disease and the dissemination of the virus are different.
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While the magnitude of our results relies on modelling choices, qualitative results and new
intuition and channels would remain valid for a wider range of models. Of course, the mag-
nitude of our results depends on calibration inputs and some of our model assumptions. We
have shown that the mortality rate as well as the levels of time-constrained and asymptomatic
agents all have important implications for the quantitative results. We showed the importance
of testing as a vehicle to change the epidemic’s dynamics or to improve the economy by pro-
viding information. We showed that this second channel is even more important in the context
of an epidemic with a large number of asymptomatic cases. We showed that the economy
could suffer more when the fraction of asymptomatic cases is larger. However, we postulated
a speedier recovery that would not offset all accumulated losses. We showed that an econ-
omy with more time-constrained agents would have a worse economic recession, even though
a larger fraction of the population would not change their behavior in response to the epi-
demic. Our direct model prediction is that the pandemic will eventually have a larger impact
on poorer countries’ health outcomes, even without considering lower physical and technical
hospital capacity.

We showed that the assessment of containment measures has to be done against a realistic
counterfactual. That is, we should expect agents to take precautions against the virus even
if they are not mandated by the government to do so. Ignoring this fact would overestimate
the number of saved lives directly linked to a lockdown. In this context, our model suggests
that the cost per life of a lockdown could be smaller when more time-constrained agents are
present.

Finally, we showed that the virus is more likely to affect time-constrained agents, but that
most of the economic recession would come because unconstrained agents decide to cut back
their time spent outside home. While the poor bear most of the health cost, the rich are re-
sponsible for the economic slowdown, as they take precautions and stay at home.
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Figure 3. Movements across state spaces – Calibrated Model
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(a) GDP Effects (b) Infected

(c) Sick (d) Dead

Figure 4. Pandemic’s pattern: With and without testing
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(a) GDP Effects (b) Infected

(c) Sick (d) Dead

Figure 5. Pandemic’s pattern: Testing only sick agents
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(a) GDP Effects (b) Infected

(c) Sick (d) Dead

Figure 6. Pandemic’s pattern: Different levels of asymptomatic

Figure 7. Impact of testing given levels of asymptomatic
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(a) Infected (b) Dead

Figure 8. Pandemic’s pattern: Unconstrained vs. time-constrained agents - Benchmark

(a) GDP Effects (b) Infected

(c) Sick (d) Dead

Figure 9. Pandemic’s pattern: Different levels of time-constrained agents
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(a) Infected (b) Dead

Figure 10. Pandemic’s pattern: Unconstrained vs. time-constrained agents - 50 percent con-
strained

(a) GDP Effects (b) Infected

(c) Sick (d) Dead

Figure 11. Pandemic’s pattern: With and without testing - 50 percent time-constrained
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(a) GDP Effects (b) Infected

(c) Sick (d) Dead

Figure 12. Pandemic’s pattern: High vs. low mortality rates

Figure 13. Hours worked by susceptible unconstrained workers
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(a) GDP Effects (b) Infected

(c) Sick (d) Dead

Figure 14. Pandemic’s pattern: Effect of lockdowns

Figure 15. Hours worked by susceptible unconstrained workers
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(a) GDP Effects (b) Infected

(c) Sick (d) Dead

Figure 16. Pandemic’s pattern: Effect of lockdowns - 50 percent time-constrained

Figure 17. Hours worked by susceptible unconstrained workers
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(a) GDP Effects (b) Infected

(c) Sick (d) Dead

Figure 18. Pandemic’s pattern: Effect of lockdowns – exhaustible ICU beds

Figure 19. Hours worked by susceptible unconstrained workers
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