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I.   INTRODUCTION AND CONTRIBUTION 

The most recent advancement of endogenous growth theory has been the emergence of 
R&D-based models of growth in the seminal papers of Romer (1990), Grossman and 
Helpman (1991a, 1991b), and Aghion and Howitt (1992). This class of models aims to 
explain the role of technological progress in the growth process. R&D-based models 
view technology as the primary determinant of growth and model it as an endogenous 
variable. 
 
At the heart of R&D-based growth models is a knowledge/technology production 
function that describes the evolution of knowledge creation. According to that function, 
the rate of production of new knowledge depends on the amount of labor engaged in 
R&D and the existing stock of knowledge available to these researchers. A crucial debate 
framed by Romer and Jones’s work (within the R&D-based growth literature) is centered 
on the functional form of the knowledge production function. Specifically, the debate is 
centered on how strongly the flow of new knowledge depends on the existing stock of 
knowledge. Intuitively, the dependence of new knowledge on the existing stock is 
intended to capture an “intertemporal spillover of knowledge” to future researchers: 
knowledge or “ideas” discovered in the past may facilitate the discovery or creation of 
“ideas” in the present. Hence, the debate is concerned with the magnitude or the strength 
of these intertemporal knowledge spillovers. As will be discussed below, different 
assumptions on the magnitude of knowledge spillovers generate completely different 
predictions for long-run growth. 
 
This paper contributes to the empirical understanding of R&D-based growth models in 
the following ways. We use time-series data for the U.S. economy over the postwar 
period and directly estimate the parameters of the knowledge production function. This 
allows us to directly assess the magnitude of knowledge spillovers, the source of the 
Romer-Jones debate. To achieve this goal, we exploit historical time series of patent 
filings to construct knowledge flows and stocks. Hence, the paper draws on an extensive 
body of work that uses patents as measures of innovative output and regards them as 
useful statistics for measuring economically valuable knowledge [e.g., Hausman, Hall, 
and Griliches (1984), Griliches (1989,1990), Joutz and Gardner (1996), and Kortum 
(1997)].We employ  Johansen’s (1988,1991) maximum-likelihood cointegration 
procedure to estimate the U.S. knowledge production function. Cointegration techniques 
are needed because, like most macroeconomic time series, the inputs and output of the 
knowledge production function can be plausibly characterized as nonstationary and I(1)  
time series. Hence, if estimated using conventional methods like ordinary least squares, 
the knowledge production function will suffer from spurious correlations. Johansen’s 
cointegration procedure corrects for any spurious correlations that may exist among the 
inputs and output and explicitly accounts for the potential endogeneity of the inputs of the 
knowledge production function. 
 
In his seminal paper, Romer (1990) assumes a knowledge production function where new 
knowledge is linear in the existing stock of knowledge, holding the amount of research 
labor constant. The implication of this strong form of knowledge spillovers is that the 
growth rate of the stock of knowledge is proportional to the amount of labor engaged in 
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R&D. Hence, policies—such as subsidies to R&D—that increase the amount of labor 
allocated to research will increase the growth rate of the stock of knowledge. Since the 
Romer model is one in which long-run per capita growth is driven by technological 
progress/knowledge growth, such policies will increase long-run per capita growth in the 
economy. 
 
In an influential paper, Jones (1995a) questions the empirical validity of the Romer 
model. The Romer model predicts that an increase in the amount of research labor should 
increase the growth rate of the stock of knowledge, a prediction that depends critically on 
strong positive spillovers in knowledge production. Jones tests the validity of this 
prediction by appealing to data on total factor productivity growth (TFP) (as a proxy for 
knowledge growth) and scientists and engineers engaged in R&D (as a proxy for research 
labor). He argues that in the United States, the number of R&D scientists and engineers 
has increased sharply over the postwar period while (TFP) growth has been characterized 
by relative constancy at best. This weak relationship between the number of R&D 
scientists and engineers and TFP growth led Jones to conclude that the magnitude of 
knowledge spillovers assumed by Romer is too large. To be consistent with the empirical 
evidence, Jones argues that a smaller magnitude of knowledge spillovers needs to be 
imposed. Imposing a smaller magnitude of knowledge spillovers, however, alters the key 
implication of Romer’s model. Specifically, in the modified model developed by Jones 
(1995b), long-run growth depends only on exogenously given parameters and, hence is, 
invariant to policy changes such as subsidies to R&D.  
 
We study the cointegration properties of data on new knowledge (measured by the flow 
of new patents), the existing knowledge stock (measured by the patent stock), R&D 
scientists and engineers, and total factor productivity (TFP). We include TFP in the 
empirical model for three reasons. First, Jones (1995a) uses TFP as a measure of 
knowledge while we use the patent stock. Hence, the inclusion of TFP in the empirical 
model allows us to capture how closely our patent measure and Jones’s measure are 
related. Second, long-run economic growth depends on total factor productivity which is 
the application and embodiment of knowledge. Third, it enables the estimated empirical 
model to shed some light on the observed weak relationship between TFP growth and the 
number of R&D scientists and engineers.  
 
The paper finds two long-run cointegrating relationships. The first captures a long-run 
knowledge production function where the flow of new knowledge depends positively on 
the existing stock of knowledge and the number of R&D scientists and engineers. The 
second captures a long-run positive relationship between total factor productivity and the 
stock of knowledge (patents). The results indicate the presence of strong intertemporal 
knowledge spillovers, which is consistent with the Romer (1990) model. The long-run 
elasticity of new knowledge creation with respect to the existing stock is at least as large 
as unity. However, the long-run impact of the knowledge (patent) stock on TFP is small: 
doubling the stock of knowledge (patents) is estimated to increase TFP by only 10 
percent in the long run. In other words, the results suggest that while R&D scientists and 
engineers greatly benefit from the knowledge and ideas discovered by prior research, the 



   

 

- 5 -

knowledge they produce seems to have had only a modest impact on measured total 
factor productivity. 
 
These results seem to suggest a new interpretation of the empirical evidence documented 
by Jones (1995a). The observed weak relationship between the number of R&D scientists 
and engineers and TFP growth found by Jones is not necessarily an indication of weak 
intertemporal knowledge spillovers. We feel that knowledge, the output from researchers’ 
effort, is an important intermediate step to TFP. The paper provides some evidence that 
the rate of diffusion of new knowledge into the productive sector of the U.S. economy 
has been slow over the past 20 years. The application and embodiment of knowledge into 
productivity is complex and diffuse slowly. Our empirical work contributes to 
understanding and reconciling some of the spillover effects and issues raised by Jones 
(1995a). 
 
The rest of the paper is organized as follows. Section II presents a simple R&D-based 
growth model with the focus on the Romer-Jones debate and the knowledge production 
function. Section III describes the data on the inputs and output of that function. 
Section IV looks at the univariate and multivariate time-series properties of the data and 
estimates the knowledge production function. Finally, Section V offers some concluding 
remarks. 

II.   ROMER-JONES DEBATE ON KNOWLEDGE PRODUCTION 

In this section, we present a simplified version of the R&D-based growth models of 
Romer (1990) and Jones (1995b). We focus on the basic elements and the key 
macroeconomic implications for long run growth. As such, we present the model in 
“reduced form” and hence suppress the micro-foundation and market structure 
components. This is done purely for ease of exposition. 

A.   A Simple R & D-Based Growth Model 

The model has four variables: Output (Y), capital (K), labor (L), and technology or 
knowledge (A).2 There are two sectors, a goods sector that produces output, and an R&D 
sector that produces new knowledge. Labor can be freely allocated to either of the two 
sectors, to produce output (LY) or to produce new knowledge (LA). Hence, the economy 
is subject to the following resource constraint LY + LA = L. 
 
Specifically, output is produced according to the following Cobb-Douglas production 
function with labor augmenting (Harrod-neutral) technological progress: 
 

1( )YY K ALα α−=     , where  0< α <1                                                                      (1) 
 

New knowledge or new “ideas” are generated in the R&D sector. Let A denote the stock 
of knowledge/technology available in the economy. The knowledge stock can simply be 
                                                 
2 In this paper, knowledge, technology, and ideas are used interchangeably. 
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thought of as the accumulation of all the ideas that have been invented or developed by 
people. Then, A&  represents the flow of new knowledge or the number of new ideas 
generated in the economy at a point in time. New ideas are produced by researchers, LA, 
according to the following production function:  
 

AA Lδ=&                                                                                                                 (2) 
 
whereδ denotes (average) research productivity, i.e. the number of new ideas generated 
per researcher.δ , in turn, is modeled as a function of the existing stock of 
knowledge/ideas (A) and the number of researchers (LA) according to: 
 

1
AA Lφ λδ δ −=  ,   δ > 0                                                                                         (3) 

 
where δ, φ, and λ are constant parameters. The presence of the term φA in (3) is intended 
to capture the dependence of current research productivity on the stock of ideas that have 
already been discovered. Ideas in the past may facilitate the discovery or creation of ideas 
in the present, in which case current research productivity is increasing in the stock of 
knowledge (φ>0). To quote Jones (1995b), “The discovery of calculus, the invention of 
the laser, and the creation of semiconductors are all examples of ideas that most likely 
raised the productivity of the scientists who followed.” Hence, φ>0 captures a positive 
“spillover of knowledge” to future researchers and is referred to as the “standing on 
shoulders” effect. Alternatively, it is possible that the most obvious ideas are discovered 
first and new ideas become increasingly harder to find over time. In this case, current 
research productivity is decreasing in the stock of ideas already discovered. This 
corresponds to φ<0, the “fishing out” effect. 3  
 
The presence of the term 1−λ

AL in (3) captures the dependence of research productivity on 
the number of people seeking out new ideas at a point in time. For example, it is quite 
possible that the larger the number of people searching for ideas is, the more likely it is 
that duplication or overlap in research would occur. In that case, if we double the number 
of researchers (LA), we may less than double the number of unique ideas or discoveries 
( A& ). This notion of duplication in research or the “stepping on toes” effect can be 
captured mathematically by allowing for 0<λ<1, in which case research productivity is 
decreasing in LA.  
 
Taken together, equations (2) and (3) suggest the following knowledge or “ideas” 
production function: 
 

AA L Aλ φδ=&                                                                                                      (4) 
 

                                                 
3 The case where φ=0 allows the “fishing out” effect to completely offset the “standing on shoulders” 
effect. That is, current research productivity is independent of the stock of knowledge. 
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That is, the number of new ideas or new knowledge at any given point in time depends on 
the number of researchers and the existing stock of ideas.  

B.   Growth Implications of Model 

Given the above setup, it can be easily shown that there exists a balanced growth path / 
steady state for this economy, defined as a situation in which all variables grow at 
constant (possibly zero) rates. Along this path, output per worker (y) and the capital-labor 
ratio (k) grow at the same rate as that of technology (A):  
 

y k Ag g g= =                                                                                                    (5) 
 

where gy,  gk, and gA respectively denote the steady state growth rate of y, k, and A. 
Hence, R&D based growth models share the prediction of the neoclassical Solow model 
that technological progress is the source of sustained per capita growth. If technological 
progress ceases, so will long run per capita growth. Therefore, to solve for the steady 
state per capita growth rate in this economy, it suffices to solve for gA, which is in turn 
determined by the knowledge production function as shown below. We focus on two 
versions of that function: Romer (1990) and Jones (1995b). As will be discussed below, 
their versions have completely different implications for long run growth. Those 
implications depend critically on the magnitude of the knowledge spillover parameter 
assumed (φ in equation 4).  

C.   Romer’s (1990) Model 

Romer (1990) assumes a particular form of the knowledge production function in (4). He 
imposes the restrictions φ=1 and λ=1. The key restriction made by Romer, however, is 
φ=1. This makes A&  linear in A, and hence generates growth in the stock of knowledge 
( A& /A) that depends on LA unit homogeneously: 
 

A
A L
A

δ=
&

                                                                                                         (6) 

 
Equation (6) pins down the steady state growth rate of the stock of knowledge, gA, as 
 

AA Lg δ=                                                                                                        (7) 
 
That is, the steady state growth rate of the stock of knowledge (and per capita output by 
equation 5) depends positively on the amount of labor devoted to R&D. This key result 
has important policy implications: Policies which permanently increase the amount of 
labor devoted to R&D—a subsidy that encourages research for example—have a 
permanent long run effect on the growth rate of the economy. This “growth effects” 
result is a hallmark of the Romer (1990) model and many existing R&D-based 
endogenous growth models, including the important contributions of Grossman and 
Helpman (1991a, 1991b) and Aghion and Howit (1992). This result stands in sharp 
contrast to the neoclassical Solow model, in which changes in variables that are 
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potentially affected by policy have short-run/medium-run effects but no long run growth 
effects.  

D.   Jones’s (1995a) Critique 

Equation (7) predicts “scale effects”: an increase in the level of resources devoted to 
R&D—as measured by LA —leads to an increase in the growth rate of the economy. This 
“scale effects” prediction of the Romer model is rooted in the knowledge production 
function (equation 6), which states that technological growth should be proportional to 
the number of research workers. In a very influential paper, Jones (1995a) presents time 
series evidence against scale effects using a measure for LA and one for A& /A for the 
United States over the postwar period. He represents LA by the number of scientists and 
engineers engaged in R&D. This is perfectly reasonable, since theoretically, LA captures 
the R&D workforce. Jones uses Total Factor Productivity (TFP) growth as a proxy 
for A& /A, which is shown in figure 1a for the U.S. economy. The pattern of TFP growth is 
well known: TFP growth appears to fluctuate around a relatively constant mean of about 
1.4 percent per year over the postwar period. Therefore, LA should, like A& /A, be 
relatively constant and exhibit no persistent increase. Otherwise, the Romer’s knowledge 
production function and the resulting scale effects are inconsistent with the time series 
evidence. 
 
Figure 1b plots LA, as measured by the number of scientists and engineers engaged in 
R&D for the U.S. economy. As Figure 1b reveals, LA is not relatively constant over the 
postwar period. Rather, it exhibits a very strong upward trend, rising from about 100,000 
in 1950 to about 1 million by 1997. Therefore, the knowledge production function in 
equation (6), which lies at the heart of the Romer (1990) model, is inconsistent with the 
time series data. It is important to emphasize that the criticism by Jones is not exclusive 
to the Romer (1990) model, but rather is a criticism against many existing R&D-based 
endogenous growth models that share Romer’s knowledge production function. 

E.   Jones’s (1995b) Alternative 

Since the rejection of the scale effects prediction is rooted in the incongruence of the 
knowledge production function with the time series data, it seemed sensible for Jones to 
tackle and modify its functional form in an attempt to come up with an alternative 
specification that is consistent with the observed time series pattern of the data. 
Jones (1995b) actually shows that relaxing the assumption φ=1 generates a steady state 
that is consistent with the rising number of research workers observed in the data. 
To do that, consider once again the modified knowledge production function in (4) and 
divide both sides of that equation by A to get: 

1
ALA

A A

λ

φδ −=
&

                                                                                                   (8) 

In the steady state, the growth rate of A is constant by definition. Therefore, the 
right-hand-side of (8) must be constant in the steady state, which means 
that λ

AL and φ−1A must grow at the same rate. That is, 
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(1 )A

A

L A
L A

λ φ= −
&&

                                                                                       (9) 

 
Now, λ is a positive parameter and A& /A is always positive and constant in the steady 
state. Therefore, (9) implies that a constant steady state growth of A will be consistent 
with a rising LA, i.e. AL& / LA>0, provided that φ is less than unity. Stated slightly 
differently, imposing φ < 1 guarantees a steady state in the presence of a rising number of 
research workers. Hence, Jones (1995b) argues, assuming φ < 1 is consistent with the 
observed relative constancy of TFP growth (the proxy of A& /A used by Jones) in spite of 
the rising trend of R&D scientists and engineers. Moreover, with φ < 1 imposed, the scale 
effects of the Romer (1990) model are removed. This can be seen formally by solving for 
the steady state growth rate of A from equation (9) as:    

 

1
A

A
A

Lg
L

λ
φ

=
−

&
                                                                                             (10) 

 
That is, the long run growth rate of the stock of knowledge [which is also the long run 
growth rate of per capita output by (5)] depends on the growth rate of LA rather than its 
level. Note that positive knowledge spillovers are not ruled out. The parameter capturing 
knowledge spillovers, φ, may plausibly be positive and large, Jones argues. What the 
above discussion does suggest is that the degree of positive knowledge spillovers 
assumed by Romer is arbitrary and is inconsistent with the time series evidence. A 
weaker magnitude of such spillovers is needed to achieve congruency with the evidence. 
 
Now, along the balanced growth path/steady state, the growth in the number of research 
workers will be equal to the growth rate of the labor force/population. If it was greater, 
then the number of researchers will eventually exceed the labor force, which is not 
feasible. Let n denote the growth rate of the labor force/population, which Jones (1995), 
following the literature, assumes to be exogenously given. Then the above argument 
implies that in the steady state, nLLLL AA == // && . Substituting this relationship into (10) 
yields 

1Ag nλ
φ

=
−

                                                                                                  (11) 

 
Two important features of equation (11) are worth noting. First, one does not want to 
interpret it in a cross-country framework as saying that countries with a higher population 
growth enjoy faster growth. Rather, the model should be thought of as describing the 
evolution over time of a country at the forefront of the technological frontier, a country 
like the United States. That said, what is the intuition underlying this equation? The 
intuition is best seen by assuming λ =1 and φ >0, in which case the knowledge production 
function reduces to φδ ALA A=& , where positive knowledge spillovers are assumed. At 
any given point in time, researchers draw on the existing stock of knowledge to create 
new knowledge. New knowledge, in turn, adds to the stock and the latter feeds back into 
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subsequent new knowledge through a positive knowledge spillover effect (φ >0). Over 
time, both new knowledge ( A& ) and the stock A are growing; but since the returns to 
knowledge accumulation is less than unity (φ <1), the ratio of new knowledge ( A& ) to the 
stock A will be falling if the number of researchers is constant. To offset that potential 
fall in AA /& , the number of researchers must increase over time—because of population 
growth for example—sustaining growth in the model. This explains the dependence of 
the long-run value of AA /&  on n in equation (11). 
 
Second, equation (11) implies that long run growth depends on φ, λ, and n, parameters 
that are usually assumed to be exogenously given! Hence, long-run growth in the 
Jones’(1995b) model is independent of policy changes such as subsidies to R&D. 
Because the returns to knowledge accumulation is assumed to be less than unity (φ <1), 
such changes will affect the growth of A along the transition path to a new steady state, 
and these “transitional growth effects” will be translated into long-run level effects. 
Simply stated, subsidies to R&D will alter the long run level of the stock of knowledge 
but not its long-run growth rate. In the modified model of Jones (1995b), long run growth 
is invariant to policy. As Jones (1995b) concludes his paper “Nothing in the U.S. 
experience appears to have had a permanent effect on growth. In light of this evidence, 
the invariance result maybe exactly what the data requires.” 

III.   DATA 

In this section, we describe the variables used in empirically reconsidering the theoretical 
relationships between the knowledge production function and productivity. The four 
include: patent applications, the stock of patents, the number of scientists and engineers 
engaged in R&D, and total factor productivity. The sample frequency is annual and is 
available from 1948 to 1997. Variables in levels will be transformed into natural 
logarithms. 
 
Patent applications serve as a valuable resource for measuring innovative activity and 
have been extensively used in the patent literature as measures of technological change 
[see, e.g., Hausman, Hall, and Griliches (1984), and Kortum (1997)]. Also, Griliches 
(1989, 1990) and Joutz and Gardner (1996) argue that patent applications are a good 
measure of technological output. Firms have invested resources in developing a new 
technology, which they feel has economic value and they are willing to submit an 
application to capture rents from their initial investments. As such, this paper follows the 
patent literature and uses patent applications to construct knowledge flows and stocks.4  

                                                 
4 Note that we measure knowledge/technology using patent applications rather than patent grants. The lag 
between application and grants could be quite long and it varies over time partly due to changes in the 
availability of resources to the U.S. Patent Office. This notion is best articulated by Griliches (1990): “A 
change in the resources of the patent office or in its efficiency will introduce changes in the lag structure of 
grants behind applications, and may produce a rather misleading picture of the underlying trends. In 
particular, the decline in the number of patents granted in the 1970s is almost entirely an artifact, induced 
by fluctuations in the U.S. Patent Office, culminating in the sharp dip in 1979 due to the absence of budget 
for printing the approved patents.” This paper views patent applications as a much better measure of 
knowledge/ technology than patent grants. Also, It is widely believed that patent application data is a better 
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The output of the knowledge production function should reflect new knowledge created 
by U.S. researchers. As such, we use domestic patent applications (DP) filed at the 
U.S. Patent and Trademark Office (USPTO) to measure new knowledge. The USPTO 
provides information on the number of patent applications filed from 1840 to present. 
These include patents for invention, designs, and plants. These data are available on-line 
from the U.S. Patent and Trademark Office web site, at: 
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/h_counts.htm. 
 
Figure 2 plots the log of domestic patent applications (dp). There appears to be an overall 
upward trend in the series over the entire sample period 1948-1997. In fact, domestic 
patent applications grew at an average annual rate of 1.7 percent between 1948 and 1997. 
Looking at sub-periods, domestic patent applications seem to have grown fairly rapidly 
during the 1950s till about the mid 1960s. The average annual growth rate was about 
1.6 percent between 1948 and 1965. However, from the mid 1960s till about the mid 
1980s, domestic patent applications seem to be characterized by relative constancy. What 
is particularly striking in figure 2 though is the behavior of the series since the mid 1980s: 
since about 1985, domestic patent applications have increased dramatically at an average 
annual rate of 5.1 percent, an increase substantially higher than any other witnessed over 
the entire course of US history. There are several hypotheses in the literature that attempt 
to explain this phenomenon. It is important to put the magnitude of the increase and the 
informational content in perspective. 
 
Kortum (1997) and Kortum and Lerner (1998) articulate that the sharp increase in 
patenting witnessed since the mid 1980s is the result of a major institutional change in the 
US patent policy, a change that substantially benefited patent holders. Specifically, in 
1982, Congress established the Court of Appeals of the Federal Circuit (CAFC), a 
specialized court to hear patent cases. (Patent appeals cases were heard before district 
courts. Before 1982, the treatment of appeals varied by district.) The court unified and 
made alterations to the patent doctrine with the purpose of enhancing the efficiency of the 
patent system. It also seemed to have broadened the rights of patentees as its decisions 
and rulings have been widely conceived as being “pro-patent”. This institutional change 
and the stronger level of patent protection it brought could explain why patenting has 
surged since 1985. 
 
Alternatively, and more interestingly, the sharp increase in patenting might reflect a 
“real” surge in discovery and innovation. Patents have long been used and are used in this 
study as an outcome of innovative activity and technological change.  
 
Several pieces of evidence in the literature are supportive of this view. First, Greenwood 
and Yorukoglu (1997) document that the 1980s and 1990s witnessed “an explosion of 
formation of new firms and innovation in the high-tech industries, particularly in the 

                                                                                                                                                 
measure of new knowledge produced in an economy than R&D expenditures [see, e.g., Joutz and Gardner 
(1996)]. The reason is that R&D expenditures are more properly thought of as inputs to technological 
change while patents are an output. Hence patent applications more closely approximate the output of the 
knowledge production function in R&D-based growth models than R&D expenditures. 

http://www.uspto.gov/web/offices/ac/ido/oeip/taf/h_counts.htm
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information technology, biotechnology, and software industries.” Hence, the sharp 
increase in patenting may indicate a “technological revolution” as emphasized by these 
authors.  
 
Second, it is quite possible that the use of information technology itself in the discovery 
of new ideas might have substantially boosted research productivity. Arora and 
Cambardella (1994) argue that this was an important source of accelerating technological 
change.  
 
A third possibility, emphasized by Kortum and Lerner (1998), is that the sharp increase in 
patenting since the mid 1980s indicates an increase in innovation driven by 
improvements in the management of R&D. In particular, there has been a reallocation of 
resources from basic research toward more applied activities and hence a resulting surge 
in patentable discoveries. As Kortum and Lerner [p. 287] point out “Firms are 
restructuring, redirecting and resizing their research organizations as part of a 
corporate-wide emphasis on the timely and profitable commercialization of inventions 
combined with the rapid and continuing improvement of technologies in use.”  
 
The stock of knowledge is derived from the cumulated number of total patents applied for 
by both U.S. and foreign inventors. Patent filings are converted into a stock measure 
(STP) using the perpetual inventory method with a depreciation rate of 15 percent [see 
Appendix A for details on data measurement].  
 
This is typical in the U.S. patent literature [e.g., Griliches (1989), Joutz and Gardner 
(1996)]. While this approach is ad-hoc and not necessarily justified by theory, researchers 
have typically checked the robustness of their results to changes in the depreciation rate. 
We experimented with constructing stocks using 0, 5, and 10 percent depreciation rates, 
and found that the precise rate made very little difference. Hence, the results presented in 
this paper are not sensitive to changes in the depreciation rate on the stock. Also, as will 
be shown below, the model estimated in the paper is stable over the sample period. This 
is particularly important since it implies that, among other things, the long–run impact of 
the existing stock of knowledge on the flow of new knowledge has remained stable over 
time. 
 
Figure 3 plots the log of the stock of total patent applications (stp). There appears to be a 
strong upward trend in the series over the entire sample 1948–1997. In fact, between 
1948 and 1997, the stock of total patent applications grew at an average annual rate of 
1.9 percent. There also appears to be a substantially stronger trend since the mid 1980s: 
prior to 1985, the stock grew at an average annual rate of 1.2 percent. However, after 
1985, the average annual growth rate of the stock more than tripled to about 4 percent. 
This more rapid increase in the stock since the mid 1980s captures the more rapid 
increase in (the number of) domestic patent applications that occurred over that period.5 

                                                 
5 By definition, the stock of total patent applications includes (1) the cumulated numbers of domestic patent 
applications (i.e., patent applications by U.S. inventors at the U.S. Patent Office), and (2) the cumulated 
numbers of foreign patent applications (i.e., patent applications by foreign inventors at the U.S. Patent 
Office). We examined the data on the number of foreign patent applications, and found that it is 
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Figure 4 plots the log of the total number of scientists and engineers engaged in R&D 
activities (s&e) in the United States. This measure was used by Jones (2002) and 
represents scientists and engineers employed in industry, the federal government, 
educational institutions, and nonprofit organizations. It is accepted as the best proxy for 
the primary input or effort in the knowledge production process. The data for the period 
1979–97 is obtained from the National Science Foundation, Science and Engineering 
Indicators-2000. This source is available online at 
http://www.nsf.gov/sbe/srs/seind00/start.htm. For years prior to 1979, the data is taken 
from Jones (2002) and Machlup (1962) who, in turn, obtain their data from the National 
Science Foundation [NSF (1993, 1962, 1961, and 1955)]. 
 
The series exhibits a very strong upward trend over the past 50 years. In the late 1960s 
through the early 1970s, however, employment of R&D scientists and engineers seems to 
have declined. The National Science Foundation [NSF (1998)] documents that this is 
probably due to the fact that both the federal government and the business sector 
de-emphasized funding for certain research programs during that period. In particular, 
federal funding for space-related R&D declined substantially in the late 1960s and early 
1970s after the thrust of funding in the early-to-mid 1960s, during which the 
United States had invested substantial resources in the “space race” with the 
Soviet Union. Overall, however, the number of R&D scientists and engineers grew 
substantially at an average annual rate of 4.3 percent over the period 1948–97.  
 
Total factor productivity (TFP) for the private business sector of the U.S. economy was 
obtained from Larry Rosenblum at the Office of Productivity and Technology, the 
Bureau of Labor Statistics, U.S. Department of Labor. Figure 5 shows the plot for the log 
of total factor productivity (tfp); it follows an upward trend over the postwar era. In fact, 
it grew at an average annual rate of about 1.4 percent between 1948 and 1997. As shown 
in Figure 5, total factor productivity growth appears to have slowed since 1973—the 
well-known productivity slowdown. Prior to 1973, the average annual growth rate of total 
factor productivity was 2.1 percent. After 1973, the average annual growth rate declined 
to about 0.7 percent. 

IV.   ESTIMATION OF KNOWLEDGE PRODUCTION FUNCTIONS 

We employ the general-to-specific modeling approach advocated by Hendry (1986). It 
attempts to characterize the properties of the sample data in simple parametric 
relationships which remain reasonably constant over time, account for the findings of 
previous models, and are interpretable in an economic sense. Rather than using 
econometrics to illustrate theory, the goal is to "discover" which alternative theoretical 
views are tenable and test them scientifically.  
 

                                                                                                                                                 
characterized by a sustained smooth rise over the period 1948–97. There is no evidence of a more rapid 
increase in the series beginning in the mid 1980s. As such, the more rapid increase in the stock of total 
patent applications since the mid 1980s indeed captures the more rapid increase in the numbers of domestic 
patent applications. 

http://www.nsf.gov/sbe/srs/seind00/start.htm
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The approach begins with a general hypothesis about the relevant explanatory variables 
and dynamic process (i.e. the lag structure of the model). The general hypothesis should 
be considered acceptable to all adversaries. Then the model is narrowed down by testing 
for simplifications or restrictions on the general model. 
 
The four macroeconomic and innovation variables are linked through two main 
relationships. The long-run knowledge production function and the long-run relationship 
between total factor productivity and the stock of total patents (knowledge) can be 
specified as: 

)(
)&,(

stpGtfp
esstpFdp

=
=

 

 
where lower-case letters denote variables in natural logarithms. That is, dp denotes the 
log of the number of domestic patent applications, stp denotes the log of the stock of total 
patent applications, and s&e denotes the log of the number of scientists and engineers 
engaged in R&D. According to the above production function, U.S. R&D scientists and 
engineers produce U.S. patents, but they draw upon the “world” stock of knowledge.6 
Also, the function F(.) is assumed to be linear.7 
 
Since Jones (1995a) used total factor productivity as a measure of knowledge, we also 
include the relation G(.) for the log of total factor productivity, tfp, in the model. This 
allows us to capture how closely our patent measure and Jones’ measure are related, and 
allows us to interpret the results in terms of Jones’ time series evidence on total factor 
productivity and R&D scientists and engineers. We look at the transmission mechanism 
by separating the R&D effort and output. The total stock of patents represents the 
cumulative R&D output which leads to higher productivity. This is consistent with the 
substantial micro productivity literature [ Jaffe, Henderson, and Trajtenberg (1993) and 
Thompson and Kean (2004)] that postulates a positive dependence of total factor 
productivity on the stock of patents.  
 
The first step in the modeling approach examines the time series properties of the 
individual data series. We look at patterns and trends in the data and test for stationarity 
and the order of integration. Second, we form a Vector Autoregressive Regression (VAR) 
system. This step involves testing for the appropriate lag length of the system, including 
residual diagnostic tests and tests for model/system stability. Third, we test the system for 
potential cointegration relationship(s). Data series integrated of the same order may be 

                                                 
6 Below, we also use the stock of domestic patents as an alternative measure of the stock of knowledge. We 
compare the results from using such a measure with the results where the stock of total (domestic and 
foreign) patents is used. 

7 Recall that the R&D-based growth models of Romer (1990) and Jones (1995b) assume a Cobb-Douglas 
specification for the knowledge production function expressed in terms of the levels of the variables. Since 
the function F(.) in the text is expressed in terms of the log-levels of the variables, it is therefore assumed to 
be linear.  
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combined to form economically meaningful series that are integrated of lower order. 
Fourth, we interpret the cointegrating relations and test for weak exogeneity. Based on 
these results a conditional error correction model of the endogenous variables may be 
specified, further reduction tests are performed and economic hypotheses tested. This last 
step will not be preformed, because the primary goal is to understand the long-run 
relationships. 

A.   Integration Analysis 

Figures 2–5 showed significant trends in the series and the autocorrelations were quite 
strong and persistent. Nelson and Plosser (1982) found that many macroeconomic and 
aggregate level series are shown to be well modeled as stochastic trends, i.e., integrated 
of order one, or I(1). Simple first differencing of the data will remove the nonstationarity 
problem, but with a loss of generality regarding the long run “equilibrium” relationships 
among the variables. We performed the standard augmented ADF test in both levels and 
differences with a constant and trend. Table 1 contains the results in five columns and is 
divided in two. The top half is for the tests in levels and the bottom is for the tests in first 
differences or whether the series are I(1) and not I(2), respectively. The first column lists 
the variables. The Akaike information criterion was used to set the appropriate lag-length 
for the dependent variable in each test and is provided in the second and fourth columns. 
The t-ADF statistics are reported in the third and fifth column.  
 
We cannot reject the null hypothesis of a unit root for all four variables in levels.8 
Domestic patents, total factor productivity, and scientists and engineers engaged in R&D 
reject the null of a unit root in first differences while the stock of patents does not. 
However, a recursive analysis of the coefficient estimate and the t-ADF suggest that it is 
non-constant with a break right where one might expect, 1985. In our preliminary look at 
the data we saw the acceleration in the propensity to patent and its impact on the stock of 
patents. Figure 6 presents a plot of the first difference in the logarithm of the patent stock 
measure. It appears there is a permanent shift in the mean starting the in the mid 1980s. 
The Perron (1989) structural break procedure was used to test for whether there was 
mean shift in the first difference process which caused the I(1) findings. We could not 
reject the hypothesis of an I(1) process after correcting for the (structural) mean shift.  

B.   Cointegration Analysis 

Our analysis of the inputs and outputs of knowledge production suggest that the 
processes are non-stationary.9 This has implications with respect to the appropriate 
statistical methodology. While focusing on changes in knowledge production eliminates 
the problem of spurious regressions, it also results in a potential loss of information on 

                                                 
8 Table 1 also includes a fifth variable, sdp. sdp is the stock of domestic patents constructed from the 
number of domestic patent applications using the perpetual inventory method. This variable will be 
discussed at the appropriate time below. For now, it suffices to say that the statistical arguments mentioned 
in the text for stp also apply to sdp.  

9 Elliott (1998) points out the pitfalls in using cointegration methods when the data are stationary. However, 
this is a limitation of any research using this methodology.   
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the long-run interaction of variables (e.g., Davidson, Hendry, Srba, and Yao (1978)). We 
examine the hypothesis of whether there exist economically meaningful linear 
combinations of the I(1) series: (domestic) patent filings, the stock of patents, scientists 
and engineers engaged in R&D, and total factor productivity that are stationary or I(0). 
The Johansen maximum likelihood procedure is used for the analysis. The procedure 
begins with specifying a VAR system  

                      tt

p

i
itit eDYY +Ψ++= ∑

=
−

1
0 ππ                                                                   (12)  

where 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Ω

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

t

t

t

t

tt

t

t

t

t

t

Trend
mpulseI

mpulseI
Stepdum

DandINe

yroductivitPFactorTotal
EngineerScientistsDR

StockPatent
FilingsPatent

Y
96

9495
86

),,0(~,
&&

. 

Yt is ( 1×n ) and the si 'π are ( nn× ) matrices of coefficients on lags of Yt. tD  is a vector 
of deterministic variables that can contain a linear trend, dummy-type variables, or other 
regressors considered to be fixed and non-stochastic. Finally, et is a ( 1×n ) vector of 
independent and identically distributed errors assumed to be normal with zero mean and 
covariance matrix Ω [i.e., et ~ i.i.d. N(0, Ω)]. As such, the VAR comprises a system of 
n=4 equations, where the right-hand side of each equation comprises a common set of 
lagged and deterministic regressors.  
 
The VAR includes our four series: the log of domestic patent applications, dp, the log of 
total factor productivity, tfp, the log of the (lagged) stock of total patent applications, 
stpl110, and the log of the number of scientists and engineers engaged in R&D, s&e. The 
VAR also includes a constant, a trend term, and three dummy variables. The first dummy 
variable is Stepdum86, which takes the value of one after 1985 and zero otherwise. The 
inclusion of this variable is intended to capture the dramatic increase in patenting since 
the mid 1980s as discussed in detail above. The second dummy variable is Impulse9495 
which takes the value of one in 1994 and 1995 and zero otherwise, and the third is 
Impulse96, which is zero except for unity in 1996. Economically, Impulse9495 captures 
several institutional changes in the U.S. patent policy: the movement towards the typical 
international patent system policy of granting 20 awards instead of 17 year awards, 
twelve-year patent renewal fees were collected for the first time in the United States in 
1994/95 [Kortum 1997], whereas Impulse96 captures the instantaneous negative response 
by agents facing an increased cost of patent applications [see Figure 2]. Statistically, the 
residuals of the VAR fitted without Impulse9495 and Impulse96 have large outliers in 

                                                 
10 Stpl1 is simply stp lagged one period. Since stp is calculated as end of period stocks, we enter it with a 
lag in the VAR and cointegration analysis. 
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1994, 1995, and 1996 and induce misspecification in the residuals. This problem is 
resolved by the inclusion of the two dummy variables, which results in a substantial 
improvement in the fit of the model and much better residual diagnostics. In addition, the 
inclusion of the three dummies Stepdum86, Impulse9495 and Impulse96 ensures a 
statistically stable/constant VAR as will be shown below. 
 
Following Johansen and Juselius (1990), the VAR model provides the basis for 
cointegration analysis. Adding and subtracting various lags of Y yields an expression for 
the VAR in first differences. That is 
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The VAR model in differences is actually a multivariate form of the ADF unit root test. If 
π  is a zero matrix, then modeling in first differences is appropriate. The matrix π  may 
be of full rank or less than full rank, but of rank greater than zero. When nrank =)(π , 
then the original series are not I(1), but in fact I(0); modeling in differences is 
unnecessary. But, if nrrank <≡< )(0 π , then the matrix π can be expressed as the outer 
product of two full column rank (nxr) matrices βα and  where 'αβπ = . This implies 
there are n-r unit roots in Yπ . The VAR model can then be expressed in error correction 
form. That is 
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The matrix β ′contains the cointegrating vector(s) and the matrixα  has the weighting 
elements for the rth cointegrating relation in each equation of the VAR. The matrix rows 
of 1' −tYβ  are normalized on the variable(s) of interest in the cointegrating relation(s) and 
interpreted as the deviation(s) from the “long-run” equilibrium condition(s). In this 
context, the columns of α  represent the speed of adjustment coefficients from the “long-
run” or equilibrium deviation in each equation. If the coefficient is zero in a particular 
equation, that variable is considered to be weakly exogenous and the VAR can be 
conditioned on that variable. 

C.   Unrestricted Model and Testing for Cointegration 

Before conducting the cointegration tests, the appropriate lag-length for the VAR must be 
determined and a constant model found. The lag-length is not known a priori, so some 
testing of lag order must be done to ensure that the estimated residuals of the VAR are 
white noise, that is, they do not suffer from autocorrelation, non-normality, etc. Initially, 
we start with a VAR that includes 4 lags on each variable, denoted VAR(4), then we 
estimate a VAR with 3 lags, VAR(3), and test whether the simplification from VAR(4) to 
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VAR(3) is statistically valid. The process is repeated sequentially down to a VAR with a 
single lag, VAR(1).  
 
Table 2 reports F and related statistics for testing the validity of these simplifications. The 
bottom block of Table 2 reports the F statistic for testing the null hypothesis indicated by 
the model to the right of the arrow against the maintained hypothesis indicated by the 
model to the left of the arrow. The p-value or the tail probability associated with the 
realized value of the F statistic is also reported. None of the F statistics is significant at 
the 1 percent, 5 percent or even the 10 percent critical values, and hence the 
simplification to a VAR with a single lag, VAR(1), is statistically valid. This result is also 
supported by the Schwarz criterion (SC) and the Hannan-Quinn criterion (HQ) reported 
in the top block of Table 2. Both criteria are minimized when the VAR has a single lag11. 
Hence, we proceed with the analysis using the VAR(1) model.  
 
Table 3 reports summary diagnostic tests on the residuals for the VAR with a single lag, 
VAR(1). The diagnostic tests consist of an F-test for the null hypothesis that there is no 
residual vector serial correlation; a chi-square test for the null hypothesis of joint 
normality of the residuals; and finally two alternative F-tests for the null hypothesis that 
there is no residual vector heteroskedasticity.12 The realized values of the various test 
statistics and the associated tail probabilities (p-values) are given in columns three and 
four respectively. Statistically, the VAR(1) appears well-specified, with no rejections of 
the null hypothesis from the various test statistics. That is, the VAR residuals appear 
normal, homoskedastic, and serially uncorrelated.13 
 
Another important aspect of diagnostic checking is testing for model constancy/stability. 
To accomplish that, recursive estimation techniques are employed. The basic idea behind 
recursive estimation is to fit the VAR to an initial sample of M-1 observations, and then 
fit the VAR to samples of M, M+1, …, up to T observations, where T is the total sample 
size.  
 
Figure 7 shows the results from recursively estimating the VAR. Specifically, Figure 7 
shows the 1-step ahead residuals for each equation of the VAR bordered by plus or minus 
twice their standard errors. Residuals lying outside the standard error bands are 
suggestive of outliers and /or model non-constancy. The estimated recursive residuals 
from the VAR provide evidence that the model is fairly stable. This result is confirmed 
by the plots of the 1-step ahead Chow tests (denoted 1up) and Break-point Chow tests 
(denoted Ndn), which are shown for each equation of the VAR and for the VAR system 
as a whole (denoted 1 up CHOWs and Ndn CHOWs respectively). The Chow statistics 
are scaled so that the significant critical values become a straight line at unity. That is, if 

                                                 
11 For an excellent reference on the various information criteria, see Judge et. al. (1988) 

12 For references on the test statistics, see Doornik and Hendry (2001). 

13 The diagnostic tests mentioned in the text are vector or system tests. Diagnostic tests performed on each 
equation of the VAR separately yield the same results as those for the entire system. 
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the given plot exceeds unity at any point in time, this indicates a rejection of the null 
hypothesis of model stability at that point. The results from the various plots strongly 
suggest that the VAR is stable at the 1 percent significance level.14 The above analysis 
indicates that our VAR is empirically well behaved and hence is a suitable starting point 
for cointegration analysis. 
 
The cointegration analysis proceeds in several steps: testing for the existence of 
cointegration, interpreting and identifying the relationship(s), inference tests on the 
coefficients from theory and weak exogeneity. Testing permits reduction of the 
unrestricted general model to a final restricted model without loss of information. 
 
Table 4 presents the initial test for cointegration and is broken up into three panels. 
Panel A contains results on the possible number of cointegrating relations. There are four 
columns for the eigen-values, null hypothesis, Trace statistic, and its’ associated p-value. 
In the first row, the null hypothesis, r=0, is that there is at most r cointegrating vectors as 
opposed to the alternative that there are more than zero cointegrating vectors. This 
hypothesis is soundly rejected with a trace statistic of 184.03 and no measurable p-value. 
When the possible maximum number of cointegrating relations is one against the 
alternative hypothesis that there is more than one, the test statistic is 58.87 and the 
p-value is [0.00]. This suggests that there are at least two cointegrating vectors. We 
cannot reject the null hypothesis that there is at most two cointegrating relations in the 
third row.  
 
Panel B presents the two cointegrating vectors normalized on (domestic) patent filings 
and total factor productivity respectively. We decided to interpret the two vectors as a 
knowledge production function and function for the determinants of total factor 
productivity. Panel C reports the feedback coefficients and their standard errors 
associated with each long-run equation for the variables of the system in first differences.  
The cointegrating vectors or relationships as they appear are not uniquely identified and 
hence the standard errors of these vectors cannot be computed. Any linear combination of 
the two vectors forms another stationary vector, so the estimates produced by any 
particular vector are not necessarily unique. Therefore to achieve identification, it is 
necessary to impose restrictions on the cointegrating vectors. The restrictions are 
motivated by economic theory and enable us to test for over-identification and obtain 
standard errors for the over-identified parameters. 
 
For ease of exposition and to understand the nature of the restrictions easier, the model 
can be written in terms of equation (14). The error term and short-run components are 
omitted to focus on the long-term model. Also the trend is restricted to lie in the 
cointegration space.  
 

                                                 
14 See Doornik and Hendry (2001) for more details on the various Chow tests. 
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The β’s and α’s are those reported in Panels B and C respectively in Table 4. These are 
the implied unrestricted long-run (cointegrating) solutions. The implied (unrestricted) 
long run solution of the model is given by: 
 

12 13 14 151 &dp tfp stpl s e Trendβ β β β= + + +                                                 (16) 
 

21 23 24 251 &tfp dp stpl s e Trendβ β β β= + + +                                                 (17) 
 
Two restrictions are required to just identify the model; any additional restrictions are 
over-identified and thus testable. The first restriction is on the knowledge production 
relation and relates the dependence of new knowledge on the stock of knowledge and the 
R&D scientists and engineers. There does not seem to be a reason to include a direct 
effect from total factor productivity in this relation from the R&D based growth theory. 
We impose β12=0. Second, the literature does not suggest that current patent applications 
should determine productivity. This restriction is imposed by setting β21=0. 
 
The above two restrictions produce a just-identified model. We consider and test three 
over-identifying restrictions on the β’s and α’s. The first type of test is for the 
specification of the cointegrating relation and the latter are tests for weak exogeneity. 
 
First, scientists and engineers in the R&D sector are unlikely to have a direct long-run 
impact on total factor productivity. Again, the effect is only indirect: R&D scientists and 
engineers produce new knowledge. New knowledge ultimately augments the stock of 
knowledge and the latter has a potential impact theoretically on tfp. Thus, we exclude 
s&e from the second cointegrating vector, by testing 24β = 0. Statistically, the likelihood 
ratio test of the restriction 24β = 0 cannot be rejected. The test statistic is χ2(1) = 1.43 
[0.23]; the degrees of freedom are in parentheses and the p-value is in square brackets.  
 
Weak exogeneity is an important issue in model reduction. It implies that inference 
testing can be conducted for the parameters of interest from a conditional density rather 
than a joint density without loss of information. The modeling effort is simpler yet still 
efficient. The first hypothesis is that the cointegrating relationship for new patent flows, 
dpt, does not help to explain changes in total factor productivity, ttfp∆ . The restriction is 

21α = 0. The “discovery” of new knowledge is unlikely to explain fluctuations in 
productivity. Our second hypothesis is that total factor productivity does not provide 
information about the change in the (lagged) stock of knowledge. The timing issue aside, 
it suggests that stpl1 is weakly exogenous with respect to the second cointegrating vector. 
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32α = 0 means that the second cointegrating relationship does not enter the equation 
for tstpl1∆ . These two feedback coefficients appear numerically small in panel C of table 
4. If all three over-identifying restrictions are imposed, the joint hypothesis cannot be 
rejected: χ2(3) = 4.05 [0.26]. 

D.   Restricted Cointegration Model 

Table 5 contains the results from the three restrictions on the just identified model. It is 
divided into two panels. Panel A reports the restricted (and identified) estimates for the 
cointegrating vectors, the β’s, together with their standard errors. Panel B reports the 
feedback coefficients estimates, α’s, and their standard errors. In panel A, the first 
cointegrating vector is interpreted as a long-run knowledge or “idea” production function. 
The implied long run or cointegrating relationship is given by: 
 

** ** **1.436 1 0.208 & 0.023dp stpl s e Trend= + −                                         (18) 
 
The coefficient of the lagged stock of knowledge, 1stpl , is highly significant and 
indicates the presence of positive spillovers of knowledge or a “standing on shoulders 
effect”. The sign of the coefficient is consistent with the R&D-based growth models of 
Romer (1990) and Jones (1995b). However, its magnitude is significantly greater than 
unity indicating a stronger degree of spillovers than the theoretical models. 15 This result 
will be discussed further shortly once the second cointegrating vector has been examined. 
 
The productivity of researchers, es & , increases with the stock of cumulated knowledge 
discovered by others in the past. The coefficient of es &  is positive, highly significant 
and less than unity. Our estimate of 0.21 is within the range 0.1 to 0.6 that Kortum (1993) 
finds in the micro literature on patents and R&D effort. It supports Jones (1995b) 
argument for decreasing returns due to duplicative research. Duplication by itself is not 
wasteful. Replication is an essential exercise in science and a component in learning by 
doing. 
 
The negative coefficient for the time trend may seem at first surprising. However, it 
reflects the fact that R&D scientists and engineers grew at a much higher average annual 
rate than domestic patent applications over the period 1948–97; the growth rate of the 
latter is 1.7 percent; and the former is 4.3 percent. Their difference roughly matches the 
coefficient of the trend term (-2.3 percent). The negative coefficient of the trend term is 
also consistent with findings by Griliches (1990) based on micro data of patents and 
R&D. He interprets the negative trend as capturing a decrease in the propensity to patent 
inventions due to the rising cost of dealing with the patent system. 
 
Now consider the feedback coefficients for the first cointegrating vector (the knowledge 
production function) in panel B of Table 5. They are all significant from zero, this means 
                                                 
15 In fact the likelihood ratio statistic rejects the null hypothesis that that coefficient is unity: χ2 (1)= 29.12 
[0.00]. 
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that dp, stpl1, and s&e are not weakly exogenous with respect to the parameters of the 
knowledge production function. That is, in the face of any deviation from long-run 
equilibrium, dp, stpl1, and s&e jointly respond and move the system back to equilibrium. 
This finding supports our system approach to estimating the knowledge production 
function. If a single equation approach had been adopted instead, we would have 
invalidly conditioned on stpl1, and s&e; the result would have been biased and 
inconsistent estimates of the knowledge production function. 
 
The feedback coefficient for the ∆dp equation (i.e. 11α  in equation 15) is –0.45 and 
significant from zero, suggesting stability of the error correction mechanism. The 
coefficient implies that a positive deviation of dp from its long run path (given by 
equation 18) this period is not permanent leading to explosive growth. The growth in 
(domestic) patent filings declines next period.  
 
The feedback coefficient for the ∆stpl1 equation (i.e. 31α  in equation 15) is positive and 
significant from zero. The positive sign suggests that if dp is above its long run 
equilibrium path, then this has a positive effect on the growth of the stock of knowledge 
next period.  
 
Finally, the feedback coefficient for the ∆s&e equation (i.e. 41α  in equation 15) is 
negative and significant from zero. The negative sign of the coefficient makes sense; it 
implies that if dp is above its long-run equilibrium path this period, then the growth of the 
R&D scientists and engineers slows down in the next period to correct for the 
disequilibrium. This consistent with theory that that on a balanced growth path the 
proportion of the labor force devoted to knowledge production should remain constant. 
 
Next, consider the second cointegrating vector in panel A of Table 5. The implied long 
run cointegrating relationship is given by: 
 

**0.108 1 0.009tfp stpl Trend= +                                                                     (19) 
 
That is, total factor productivity depends positively on the lagged stock of knowledge and 
a time trend. The positive coefficient for the trend term is highly significant and implies a 
trend growth of total factor productivity of about 1 percent, roughly matching its average 
annual growth rate over the sample 1948–97. The coefficient for the lagged stock of 
knowledge is positive but small. It implies that doubling the stock of knowledge will 
increase total factor productivity by only about 10 percent in the long run. The coefficient 
actually matches that found by Porter and Stern (2000) for aggregate data on OECD 
countries and falls within the range of estimates of 0.06 to 0.2 found by Griliches (1990) 
in the micro productivity literature. 
 
However, the coefficient is not significant. The likelihood ratio statistic under the null 
hypothesis that the coefficient is zero yields: χ2(1) = 0.62 [0.43]. One possible 
interpretation from Porter and Stern is that realizing the full benefits from new 
knowledge and new technologies depends critically on the diffusion of these technologies 
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into the productive sector of the economy. They provide some evidence that the rate of 
diffusion of new technologies has been slow and incomplete in the OECD countries over 
the past 20 years. That may explain the weak relationship between the stock of 
knowledge and TFP. In fact, this idea is supported by or appears to be evident with the 
U.S. data depicted in Figure 8. Since the mid 1980s, it does not look like the benefits of 
knowledge have been realized into measured productivity growth. Kortum identifies the 
trend shift in patenting behavior. We suspect that the diffusion process of this trend in 
knowledge growth did not have its full effect on total factor productivity until the late 
1990s just beyond our sample. 
 
The cointegrating relation for total factor productivity enters into the ∆tfpt equation with 
the appropriate sign and is significant. The feedback effect is rather quick. Changes in 
scientists and engineers, ∆s&et , are not weakly exogenous as well. If tfp is above the 
long-run level, it reduces s&e growth over several years. There is less “demand” for 
knowledge producing workers. This has a negative effect on changes in patents, ∆dpt , 
and is seen in the marginally significant feedback coefficient as well. The stock of 
knowledge is weakly exogenous with respect to the tfp cointegrating relation. We are not 
as confident of the interpretation of the feedback coefficients from the total factor 
productivity relation, because the relationships are perhaps more complex and there is not 
as much direction from economic theory.  
 
There are two important results mentioned above that we want to focus on in the 
remainder of this section. The first is the estimated long run impact of the lagged stock of 
total patents on domestic patents. This is the coefficient of stpl1 in equation (18), which 
governs the magnitude of knowledge spillovers. The coefficient is 1.4, significantly 
greater than unity. The second is the estimated long run impact of the lagged stock of 
total patents on total factor productivity. This is the coefficient of stpl1 in equation (19), 
which is 0.108. 
 
It is hard to compare the knowledge spillovers coefficient to the micro literature on 
patents and R&D, because the knowledge production function from that literature does 
not derive from the R&D-based models of growth and hence does not include the stock 
of existing knowledge as a variable explaining new knowledge. Also, simple aggregation 
from the micro level may not capture the potential externalities across sectors. 
 
However, Porter and Stern (2000), using aggregate panel data on OECD countries, do 
estimate a knowledge production function, where domestic patents in each country do 
depend on the existing stock of knowledge of that country. However, they use as a proxy 
for the stock of knowledge in a particular country the stock of domestic patents for that 
country rather than the stock of total (domestic and foreign) patents, which we use for the 
U.S. economy. Their results indicate a spillover coefficient of unity supporting the Romer 
(1990) model. 
 
As a check of robustness of our model, we do re-estimate a knowledge production 
function but now we replace the stock of total (domestic and foreign) patents by the stock 
of domestic patents. To explain, let sdpl1 denotes the (lagged) stock of domestic patents 
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in the U.S. economy. Starting from an unrestricted VAR that includes dp, tfp, sdpl1, and 
s&e, we implement the Johansen cointegration methodology and again estimate 2 
cointegrating vectors. The steps of this exercise are exactly the same as those for the main 
models discussed in this paper. (The results are reported in Table 6). Here, we focus on 
what is relevant for the present discussion. We find that the estimated long-run impact of 
the (lagged) stock of domestic patents on the flow of new domestic patents (dp) to be 
unity and significant, but still the long-run impact of the (lagged) stock of domestic 
patents on total factor productivity is small and insignificant (the coefficient is 0.1 with a 
standard error of 0.1). 
 
The result that the impact of the (lagged) stock of domestic patents on the flow of new 
domestic patents is unity is consistent with Porter and Stern (2000) and Romer (1990). 
This result actually supports the coefficient of 1.4 on stpl1 in equation (18): when the 
stock of total (domestic+ foreign) patents is used to measure the stock of knowledge, 
researchers have a larger pool of knowledge to draw upon, and hence the spillover effect 
is stronger than the case where the stock of domestic patents is used. 
 
We still need to reconcile these results with the time series evidence presented by Jones 
(1995a). Recall first that the Romer (1990) model assumes a spillover parameter of unity 
with the implication that the growth rate of the stock of knowledge is proportional to the 
R&D scientists and engineers. Jones (1995a) directly measured the stock of knowledge 
using total factor productivity and rejected Romer’s (1990) assumption of a spillover 
parameter of unity on the basis of the observed weak relationship between TFP growth 
and the number of R&D scientists and engineers: the number of R&D scientists and 
engineers has been trending strongly upward over the postwar period with no apparent 
benefit in terms of faster TFP growth. Jones argued that this weak relationship is 
therefore an indication of weak knowledge spillovers. 
 
The empirical results presented in this paper suggest that once patents are used to 
measure knowledge and hence the knowledge production function is directly estimated, 
the knowledge spillover parameter is unity or larger. That is, R&D scientists and 
engineers appear to have greatly benefited from the knowledge and ideas discovered by 
prior research. Therefore, the observed weak relationship between TFP growth and R&D 
scientists and engineers documented by Jones is not necessarily inconsistent with the 
presence of large knowledge spillovers once knowledge is measured using patent 
statistics.  
 
The results of this paper point to an alternative explanation of this weak relationship: the 
knowledge that R&D scientists and engineers produce seems to have had only a limited 
impact on measured total factor productivity. Productivity increases are the result of the 
successful application and the embodiment of knowledge. In a simple OLS case, we 
could attribute some of the weak result(s) to measurement problems. Errors in the 
dependent variable raise the standard error reducing the precision of the estimates. 
Increases in knowledge are not homogeneous or necessarily applicable in an economic 
sense. This results in attenuation bias for the estimates reducing their size (and 
consistency). An error in variables problem may partially explain the weak relationship 
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between the stock of knowledge and TFP. However, the dynamic approach from the 
Johansen approach may minimize the effect as the lagged variables act like instruments. 
Our empirical work contributes to understanding and reconciling some of the spillover 
effects and issues raised by Jones (1995a). 

V.   RECONCILIATION AND CONCLUSION 

This paper began with a theoretical presentation of R&D-based models of economic 
growth. The paper showed that this class of models derives long–run growth through the 
accumulation of knowledge/technology. Knowledge, in turn, is a variable whose 
evolution is modeled endogenously. At any point in time, the rate of production of new 
knowledge depends positively on the existing stock of knowledge and the number of 
research workers.  
 
The dependence of new knowledge on the existing stock captures knowledge spillovers. 
A large magnitude for knowledge spillovers implies that long–run growth is potentially 
dependent on policy variables such as subsidies to R&D [Romer (1990)]. On the other 
hand, a small magnitude for knowledge spillovers implies that long–run growth is 
invariant to policy [Jones (1995b)]. Hence, empirically assessing the strength of 
knowledge spillovers is important, at least from a policy perspective.  
 
There is an extensive empirical micro literature that looks at different kinds of spillovers 
from R&D activities. These include market spillovers, network spillovers, and knowledge 
spillovers [see, for example, Jaffe, Trajtenberg, and Fogarty (2000)]. In this paper, we did 
not consider market and network spillovers. Rather, the analysis was confined to testing 
the magnitude of knowledge spillovers at the macro level, as postulated by the R&D-
based growth literature. The existing empirical macro research on the magnitude of 
knowledge spillovers seems to suggest that they are small.  
 
In this paper, we focused on estimating the parameters of the knowledge production 
function. This allowed us to directly assess the magnitude of knowledge spillovers. To 
achieve this goal, we exploited historical time series of patent applications to construct 
knowledge flows and stocks. Cointegration techniques were used for analyzing and 
estimating models that involve nonstationary data and the specified long-run 
relationships.  
 
We found evidence for two potential long-run relationships. The first is interpreted as a 
knowledge production function; the second is a relationship that captures a positive 
dependence of total factor productivity on the stock of knowledge. The results indicate 
that knowledge spillovers are large. The estimated long–run elasticity of new knowledge 
with respect to the existing stock of knowledge is unity when the domestic stock of 
patents is used a proxy for the knowledge stock and greater than unity with a global 
measure of knowledge based on both domestic and foreign stocks of patents. However, 
the estimated long-run elasticity of total factor productivity with respect to the stock of 
knowledge is positive, small, and imprecise. 
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Our empirical work contributes to understanding and reconciling some of the spillover 
effects and issues raised by Jones (1995a).These results seem to suggest that while 
research workers benefit greatly from “standing on the shoulders” of prior researchers, 
the knowledge that they produce seems to have complex and slowly diffusing impacts on 
total factor productivity. Therefore, the results suggest a new interpretation of the 
empirical evidence. The observed weak relationship between TFP growth and the number 
of research workers he found does not necessarily indicate that knowledge spillovers are 
small. Rather, it is possibly due to the small impact knowledge has on TFP. In addition, 
we might attribute some of the weak result(s) to measurement problems in both variables. 
The application and embodiment of knowledge into productivity is complex and diffuses 
slowly (even in the long run). Further work can examine the transmission mechanism(s) 
between the knowledge production function and productivity. 
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Figure 1a. Annual Growth Rates for Total Factor Productivity (Differenced Log) 
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Figure 1b. Number of Scientists and Engineers Engaged in R&D in the United States 
(In thousands) 
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Figure 2. Log of Domestic Patent Applications (dp) 
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Figure 3. Log of Stock of Total Patent Applications (stp) 
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Figure 4. Log of Number of Scientists and Engineers Engaged in R&D (s&e) 
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Figure 5. Log of Total Factor Productivity (tfp) 
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Figure 6. First Difference of Log of Stock of Total Patent Applications (∆stp) 
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Figure 7. Model Stability Tests: Recursive Residuals and Chow Tests 
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Notes: The VAR includes a single lag on each variable (dp, tfp, stpl1, s&e), a constant, trend, and three 
dummy variables: Stepdum86, Impluse9495, and Impulse96. The estimation sample is: 1953 to 1997. 
 

Figure 8. Total Factor Productivity and (Lagged) Stock of Total Patents (in Logs) 
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Note: The series are adjusted by their means. 
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Table 1. Augmented Dickey-Fuller Test Results for Levels and Differences, 1953–97 

Variable Model with a Constant Model with a Constant and Trend 
 Lag-length t-ADF Lag-length t-ADF 
dp 0 0.22 0 -0.78 
tfp 0 -2.25 0 -1.43 
s&e 1 0.89 1 -2.05 
stp 1 1.7 1 0.44 
sdp 1 0.77 1 -0.44 
∆ dp 0 -6.51** 0 -6.52** 
∆ tfp 0 -6.71** 0 -6.59** 
∆ s&e 0 -3.75** 0 -3.36* 
∆ stp 0 -2.03 0 -2.64 
∆ stp (Perron) 1 -2.12 1 -2.08 
∆ sdp 0 -2.04 0 -2.32 
∆ sdp (Perron) 1 -2.00 1 -1.93 
 
Notes: 
 
(1) For a given variable x, the augmented Dickey-Fuller equation with a constant term included has the 
following form: 

tit

p

i
itt axxx εθπ ++∆+=∆ −

=
− ∑

1
1  

where tε is a white noise disturbance. For each variable, the table reports the number of lags on the dependent 
variable, p, chosen using the Akaike information criterion. The table also reports the augmented Dickey-Fuller 
statistic, t-ADF, which is the t-ratio on π from the above regression. The statistic tests the null hypothesis of a 
unit root in x, i.e. π=0, against the alternative of stationarity. Critical values at the 5 percent  and 1 percent 
significance levels respectively are –2.927 and –3.581. 
 
(2) The augmented Dickey-Fuller equation with a constant and trend included has exactly the form in (1) with 
an additional trend term included as a right-hand- side variable. Again, for each variable, the table reports the 
number of lags on the dependent variable and the augmented Dickey-Fuller statistic. Critical values at the 5 
percent and 1 percent significance levels are respectively –2.927 and –3.581. 
 
(3) The symbols * and ** denote rejection of the null hypothesis at the 5 percent and 1 percent critical values 
respectively. 
 
(4) The Perron adjusted results report the test for stationarity with a structural shift in the mean with the break 
point at 1985, approximately 80 percent from the starting observation. The critical values tabulated by Perron 
(1989) are -3.82 and -4.38 at the 5 percent and 1 percent significance levels, respectively.  
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Table 2. F and Related Statistics for Testing Model Reduction 

Model Log Likelihood Schwartz criterion Hannan-Quinn 
criterion 

VAR(4) 590.0 -19.12 -21.23 
VAR(3) 571.2 -19.64 -21.35 
VAR(2) 555.2 -20.28 -21.59 
VAR(1) 539.4 -20.93 -21.84 
 
Model Reduction 
 

 
Statistic 
 

 
Value 
 

 
p-Value 
 

VAR(4) --> VAR(3): F(16,64) = 1.28 [0.241] 

VAR(3) --> VAR(2): F(16,77) = 1.26 [0.246] 

VAR(4) --> VAR(2): F(32,79) = 1.29 [0.184] 

VAR(2) --> VAR(1): F(16,89) = 1.45 [0.139] 

VAR(3) --> VAR(1): F(32,93) = 1.37 [0.124] 

VAR(4) --> VAR(1): F(48,82) = 1.37 [0.104] 

   
Notes:  
 
(1) The Var(.) includes the four main variables: dp, tfp, stpl1, s&e. It also includes a constant, trend, and the 
three dummy variables: Stepdum86, Impluse9495, Impulse96. The estimation sample is: 1953 to 1997. 
(2) The bottom block reports the F statistic testing the null hypothesis indicated by the model to the right of the 
arrow against the maintained hypothesis given by the model to the left of the arrow. The tail probabilities 
associated with the values of the F statistic are reported in square brackets. 
  
 

Table 3. Summary Diagnostic Test Statistics for VAR(1) Residuals 

Test Statistic Value p-Value 

Vector AR 1-2 test: F(32,93) 1.04 [0.432] 

Vector Normality test: Chi^2(8) 6.53 [0.588] 

Vector hetero test: F(100,126) 0.71 [0.962] 

Vector hetero-X test: F(200,76) 0.55 [1.000] 

 
Notes:  
The VAR includes a single lag on each variable (dp, tfp, stpl1, s&e), a constant, trend, and three dummy 
variables: Stepdum86, Impluse9495, and Impulse96. The estimation sample is: 1953 to 1997.  
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 Notes: The VAR includes a single lag on each variable (dp, tfp, stpl1, s&e), a constant, trend, and three 
dummy variables: Stepdum86, Impluse9495, and Impulse96. The estimation sample is: 1953 to 1997. 
 

 
Notes:  
(1) The VAR includes a single lag on each variable (dp, tfp, stpl1, s&e), a constant, trend, and three dummy 
variables: Stepdum86, Impluse9495, and Impulse96. The estimation sample is: 1953 to 1997. 
 
(2) * and ** indicate the rejection (at the 5 percent and 1 percent critical values) of the null hypothesis that a 
particular coefficient is zero. These tests are based on the likelihood ratio statistic, which is distributed under the 
null hypothesis as χ2 with 1 degree of freedom.  
 

Table 4. Cointegration Analysis of Data 

A)  Johansen’s Cointegration Test 
     Eigenvalues Null Hypothesis Trace Statistic p-Value 
 0.937 r = 0 183.03** [0.000] 
 0.687 r ≤ 1 58.87 ** [0.000] 
 0.120 r ≤ 2 6.65 [0.993] 
     0.019 r ≤ 3 0.88 [0.997] 
(B)  Estimated Cointegrating Vectors β′ 
Vector        dp       tfp         stpl1       s&e        Trend 
1                 1        -0.255    -1.415      -0.195     0.025 
2                0.170    1           -0.418     -0.106    -0.002 
(C)  Feedback Coefficients α and Their Standard Errors SE(α) 
 
 α SE(α) 
 1 2 1 2 
dp          -0.398 -0.342 0.120 0.121 
tfp          0.062 -0.109 0.050 0.050 
stpl1              0.132 0.022 0.008 0.008 
s&e                        -0.162 -0.402 0.071 0.072 
 

 
Table 5. Restricted Cointegration Analysis of Data 

 
(A)  Cointegrating Vectors β′ and Their Standard Errors (in parentheses) 
Vector dp tfp stpl1 s&e Trend 
1 1 0.0 -1.436** 

(0.0619) 
-0.208** 
(0.020) 

0.023** 
(0.001) 

2 0.0 1 -0.108                  
(0.141) 

0.0 -0.009** 
(0.002) 

 
(B)  Feedback Coefficients α and Their Standard Errors SE(α) 
 
 α SE(α)  
 1 2 1 2 

 
 

dp               -0.449** -0.184 0.121 0.111  
tfp          ----- -0.108* ----- 0.050  
stpl1        0.135** ----- 0.008 -----  
s&e                     -0.190** -0.405** 0.068 0.053  
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Table 6. The Domestic Patent Stock Model: Restricted Cointegration Analysis 

 
(A)  Cointegrating Vectors β′ and Their Standard Errors (in parentheses) 
Vector dp tfp sdpl1 s&e Trend 

1 1 0.0 -1.000** 
(0.009) 

-0.011* (0.004) 0.00046* 
(0.00016) 

2 0.0 1 -0.134                  
(0.127) 

0.0 -0.0088** 
(0.0013) 

 
(B)  Feedback Coefficients α and Their Standard Errors SE(α) 
 

 α SE(α)  

 1 2 1 2 

 

 

dp               -0.341** -0.356** 0.109 0.116  

tfp          ----- -0.102* ----- 0.048  

sdpl1        0.162** ----- 0.001 -----  

s&e                     -0.166** -0.413** 0.060 0.069  

 
 
Notes:  
(1) The VAR includes a single lag on each variable (dp, tfp, sdpl1, s&e), a constant, trend, and three dummy 
variables: Stepdum86, Impluse9495, and Impulse96. The estimation sample is: 1953 to 1997. 
 
(2) * and ** indicate the rejection (at the 5 percent and 1 percent critical values) of the null hypothesis that a 
particular coefficient is zero. These tests are based on the likelihood ratio statistic, which is distributed under the 
null hypothesis as χ2 with 1 degree of freedom. 
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DATA CONSTRUCTION AND SOURCES 

Stock of total (domestic and foreign) patent applications 
The U.S. Patent and Trademark Office provides information on the number of patent 
applications filed from 1840 to present. These include patents for invention, designs, and 
plants. This data is available on-line from the U.S. Patent and Trademark Office web site, 
at: 
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/h_counts.htm 
 
Patents for invention, designs, and plants summed up to get the total number of patent 
applications. The total number of patent applications is used to construct a patent stock 
measure following the methodology proposed by Joutz and Gardner (1996) whereby: 
 

Stockt = (total number of patent applications)t  + Stockt-1 (1-d)                      (A1) 
  
where d denotes the depreciation rate. To make the above formula operational, an initial 
stock needs to be estimated. We calculate the initial stock of patents using two alternative 
methodologies. In the first, we follow the procedure suggested by Coe and Helpman 
(1995) and calculate the initial stock as: 
  

Stock0  =  (number of patent applications)0 / (g+d) 
 
where g is the average annual growth rate of the number of patent applications over the 
period for which data is available (1840–1999). The (number of patent applications)0 
denotes the number of patent applications in the first year for which data is available 
(1840), and Stock0 is the stock for that year (1840). Alternatively, we simply assume that 
the initial stock in 1840 is equal to the number of patent applications in 1840. That is, we 
assume that prior to 1840 there was no “Knowledge”. 
 
With an assumed depreciation rate, usually 15 percent [see Griliches (1989, 1990)], and 
an estimate for the initial stock in 1840, equation (A1) is used to construct the subsequent 
patent stocks. It turns out that both procedures for calculating the initial stock yield 
virtually identical patent stock series over the postwar period, and hence, it does not 
matter which one is used.  
 
Also, stocks were constructed using alternative depreciation rates typically used in the 
literature (0, 5, 10 percent). The results are consistent and robust across the range. [These 
findings are available upon request.] 
 
Domestic patent applications 
From 1940 to 1999, the data is obtained from the following sources: 
 
• Tabulations of the U.S. Patent and Trademark Office available online at 
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.pdf 

http://www.uspto.gov/web/offices/ac/ido/oeip/taf/h_counts.htm
http://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_stat.pdf
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• Unpublished memorandum of P.J. Federico, the U.S. Patent and Trademark Office, 
January 18, 1961. This was obtained from Jim Hirabayashi at the Technology 
Assessment and Forecast Branch, the U.S. Patent and Trademark Office. 
 
• Journal of the Patent Office Society, Vol. 44  (No. 2), February 1964, page 168. 
 
• Commissioner of Patents and Trademarks, Annual Report, 1966, page 26, the 
U.S. Patent and Trademark Office. 
 
From 1840 to 1939, data on domestic patent applications is not available. We follow 
Kortum and Lerner (1998) and proxy for the number of domestic patent applications by 
multiplying the total number of patent applications by the fraction of total patent grants 
issued to U.S. inventors. 
 
Stock of domestic patent applications 
We cumulate the number of domestic patent applications into a stock measure using the 
perpetual inventory method with an assumed depreciation rate of 15 percent. 
 
Scientists and Engineers engaged in R&D  
The data for the period 1979–97 is obtained from the National Science Foundation, 
Science and Engineering Indicators–2000. This source is available online at: 
http://www.nsf.gov/sbe/srs/seind00/start.htm. For years prior to 1979, the data is taken 
from Jones (2002) and Machlup (1962) who in turn obtain their data from the National 
Science Foundation [NSF (1993, 1962, 1961, and 1955)]. 
 
Total factor productivity (TFP) 
The data is for the private business sector of the U.S. economy. It was obtained from 
Larry Rosenblum at the Office of Productivity and Technology, the Bureau of Labor 
Statistics, and the U.S. Department of Labor. 
 
Total Factor Productivity measures output per combined unit of labor and capital inputs. 
The capital input measures the service flows from the level of the physical capital stock. 
The latter includes equipment, structures, inventories, and land. The labor input is based 
on hours at work data. Hours at work are first cross-classified by educational attainment, 
work experience, and gender. Consequently, there are different types of workers whose 
hours are then aggregated into an overall measure of the labor input. The growth rate of 
the labor input is computed as a weighted average of the growth rates of hours of the 
different types of workers, where the weights are the shares of each type in total wage 
compensation. The labor input constructed as such accounts for both the changes in raw 
hours at work and the changes in the skill composition (as measured by education and 
experience) of the work force. 
 

http://www.nsf.gov/sbe/srs/seind00/start.htm
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