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This paper evaluates the bias of the least-squares-with-dummy-variables (LSDV) method in 
fiscal reaction function estimations. A growing number of studies estimate fiscal policy 
reaction functions—that is, relationships between the primary fiscal balance and its 
determinants, including public debt and the output gap. A previously unexplored 
methodological issue in these estimations is that lagged debt is not a strictly exogenous 
variable, which biases the LSDV estimator in short panels. We derive the bias analytically to 
understand its determinants and run Monte Carlo simulations to assess its likely size in 
empirical work. We find the bias to be smaller than the bias of the LSDV estimator in a 
comparable autoregressive dynamic panel model and show the LSDV method to outperform 
a number of alternatives in estimating fiscal reaction functions. 
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I.   INTRODUCTION 

It is well known that the least-squares-with-dummy-variables (LSDV) method leads to biased 
estimates of dynamic panel data models when samples have a short time dimension. Although 
the properties of the LSDV and various alternative estimators have been the subject of a 
sizable body of work in the context of autoregressive distributed lag models, the case of other 
types of dynamic models have not been studied in detail. This is a gap in the literature, since 
there are a host of econometric models in which there is a dynamic relationship between the 
dependent variable and the explanatory variables—such as consumption and wealth, 
investment and the stock of capital, or the fiscal balance and public debt—where the use of 
panel data methods can be useful. 
 

This paper focuses on estimating fiscal reaction functions from panel data. There has been an 
increased interest in characterizing fiscal policy behavior by estimating relationships between 
the primary (non-interest) fiscal balance and its determinants—including the level of public 
debt and the output gap.2 Many studies in the literature use panel data techniques, given the 
typically short time dimension of data on public debt and deficits.3 Two key questions that 
these studies seek to answer are whether (i) fiscal policy satisfies the intertemporal budget 
constraint and (ii) whether it is countercyclical. A positive estimated response of the primary 
balance to increases in the public debt suggests that fiscal behavior satisfies the intertemporal 
budget constraint, and hence the long-run solvency criterion (Bohn, 1998). Likewise, a 
positive response of cyclically-adjusted primary fiscal balances to the gap between actual and 
potential output indicates that fiscal policy is countercyclical (Galí and Perotti, 2003). 

 
Most studies in the literature estimate fiscal reaction functions using the LSDV method. The 
commonly estimated fiscal reaction function specification is: 
 
 , , 1 , , ,     1,..., ,   1,..., , i t i t i t i i tp d x t T i Nα ρ β η ε− ′= + + + + = =  (1) 
 
where ,i tp  is the primary balance as a share of GDP in country i and time t, , 1i td −  is the level 
of outstanding public debt as a share of GDP, ,i tx  is a vector of explanatory variables, 
including the output gap, iη  are unobserved individual effects, and ,i tε  is a time and country 
specific disturbance. The evolution of debt is given by the debt-dynamics equation: 
 

                                                 
2 See Abiad and Baig (2005), Abiad and Ostry (2005), Celasun, Debrun and Ostry (2006), Favero (2002), Galí 
and Perotti (2003), IMF (2003, 2004), Bohn (1998), Mélitz (1997), and Wyplosz (2005), among others. 

3 For instance, in developing economies, where a growing interest in debt sustainability has resulted in many 
studies of fiscal policy behavior, the number of years for which public debt data are available is typically less 
than 15, preventing reliable estimations of country-specific fiscal behavior. Another reason for using panel data 
has been interest in common fiscal policy trends in groups of countries that have adopted joint policy 
frameworks, such as the European Economic and Monetary Union (EMU) countries. 
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 , 1 , 1 , 2 , 1 , 1,i t i t i t i t i td f d p b− − − − −= − +  
where , , ,(1 ) /(1 )i t i t i tf r g= + +  is the ratio of the gross real interest rate to the gross real GDP 

growth rate and 2
, (0, )i t bb N σ∼  are shocks to public debt that are not captured in the 

government’s primary budget.4 Using equation (1) and iterating backward, the debt-dynamics 
equation yields the MA representation of , 1i td − : 
 
 ( )( )( ), 1 , 1 , 1 , 1 , 10 0

.j
i t i t k i t j i t j i i t jj k

d f b xρ β η ε∞

− − − − − − − − −= =
′= − − − −∑ ∏  (2) 

 
Since the unobserved country-specific primary-surplus effects iη  are correlated with lagged 
debt, , 1i td − , the assumption of random-effects is inappropriate for estimating equation (1). 
Hence, equation (1) is typically estimated using the LSDV method to account for the fixed 
differences in primary balances across countries.5  
 
A previously unexplored methodological issue in fiscal reaction estimations relates to the 
dependence of lagged debt, , 1i td − , which partly represents the accumulation of past deficits, 
on lagged disturbances to the primary balance, ,i t sε − , 1s > . Such a correlation between a 
regressor and the past shocks to the dependent variable—which leads to the violation of the 
strict exogeneity assumption—is known to bias the LSDV estimator when the time 
dimension of the sample is small.6 The standard reference for this bias is the much-studied 
first-order autoregressive (AR(1)) dynamic panel data model:   
 
 , , 1 , , , 1, 1,..., ,   1,..., .i t i t i t i i tp p x t T i Nα ρ β η ε ρ− ′= + + + + < = =  (3) 
 
In this model, the lagged dependent variable , 1i tp −  can be expressed as  
 
 '

, 1 , 1 , 10
( )j

i t i t j i i t jj
p xρ β η ε∞

− − − − −=
= + +∑ . (4) 

 
Thus, like lagged debt in equation (1), it is correlated with past idiosyncratic disturbances, 

,i t sε − , 1s > . Nickell (1981) has shown this correlation to lead to a negative expected bias in 

                                                 
4 Shocks to the public debt that are not accounted for in the primary budget could arise from privatization 
receipts, below-the-line expenditures such as banking sector bailouts, or the effects of exchange rate movements 
on debt valuation.  

5 Galí and Perotti (2003) use country dummies and instrument for the output gap, which is likely to be 
endogenous to contemporaneous primary surplus disturbances. Celasun, Debrun, and Ostry (2005) present 
results from an array of estimations, including those where both debt and the output gap are instrumented.   

6 Strict exogeneity necessitates that a regressor is orthogonal to past, present, and future disturbances to the 
dependent variable. See Chapter 10 of Wooldridge (2001) for a discussion of this assumption.  
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the LSDV estimator of ρ —the coefficient on , 1i tp − , which violates the strict exogeneity 
assumption in equation (3)—in samples with a small time dimension.7 Monte Carlo studies 
find the LSDV bias on ρ  to be large when equation (3) is estimated using samples with 

30T <  (Kiviet, 1995; Judson and Owen, 1999). The bias arising from the correlation 
between past primary surplus shocks and debt is potentially important in LSDV estimations  
of (1) for debt-sustainability assessments, since it is the coefficient on debt—which is not 
strictly exogenous—that determines if fiscal policy satisfies the intertemporal budget 
constraint.  
 
This paper compares the LSDV bias in estimating the fiscal reaction function model (1) with 
the well known LSDV bias in the context of the standard AR(1) model (3). It also evaluates 
the expected biases of various alternative estimators that could be used to estimate fiscal 
reaction functions. The common feature of the fiscal reaction function and the AR(1) models 
is the violation of the strict exogeneity assumption (by , 1i td −  in equation (1) and , 1i tp −  in 
equation (3)). The differences are in functional form: (i) whereas the lagged dependent 
variable , 1i tp −  in (3) depends solely on past determinants of primary surpluses by equation 
(4), there is a potential for exogenous shocks, ,i t sb − , or shocks to ,i t sr −  and ,i t sg − , to affect 

, 1i td −  independently of past primary surplus behavior; (ii) idiosyncratic disturbances ,i t sε − , 
1s > , enter the MA representation of , 1i td −  with a negative sign in equation (2), while they 

enter the MA representation of  , 1i tp −  positively in equation (4); and (iii) in the MA 
representation of , 1i td −  in equation (2), the weights in the summation are not the powers of ρ  
as they are in the MA representation of , 1i tp −  given in equation (4). All these factors are 
likely to affect the relative size and direction of biases in estimating equations (1) and (3). 
 
The next section analytically derives the asymptotic biases of the ordinary-least-squares 
(OLS) and LSDV estimators of ρ  in estimating fiscal reaction functions from short panels. 
The derivations indicate that the use of OLS and LSDV methods on equation (1) would be 
expected to lead to negative and positive biases, respectively, on the estimates of ρ —the 
opposite signs of their corresponding biases in estimating ρ  in the AR(1) model (3). Using 
Monte Carlo simulations, Section III then analyzes the expected size of the OLS and LSDV 
biases in estimations of equations (1) and (3). The results indicate the expected biases are 
smaller in the fiscal reaction function model than in the AR(1) model. Section III also 
explores, using Monte Carlo simulations, how the biases in estimating equation (1) are 
affected by altering various aspects of the fiscal reaction function model and compares the 
performance of various estimators. Section IV concludes.  
 
                                                 
7 The use of country dummies is equivalent to running a regression on data that are expressed in deviations from 
country-specific means. Although this controls for the correlation between lagged debt and the fixed effects, it 
leads to a correlation between demeaned-debt and the demeaned-error term in short samples, exerting a bias on 
ρ . (See Bond, 2002, for an intuitive discussion.)  
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II.   BIASES OF ORDINARY-LEAST-SQUARES (OLS) AND LEAST-SQUARES-WITH-DUMMY 

VARIABLES (LSDV) ESTIMATORS: ANALYTICAL SOLUTIONS 

We consider the generalized form of equation (1): 
 

 , , 1 , , , , ,
1 1

, 1,..., , 1,...,
K J

i t i t k i k t j i j t i i t
k j

p d y x i N t Tα ρ γ β η ε−
= =

= + + + + + = =∑ ∑  (5) 

 
where tip ,  is the primary balance to GDP ratio; , 1i td −  is the debt-GDP ratio, defined as in 
equation (2); , ,i k ty  and , ,i j tx  are endogenous and exogenous variables, respectively, with  

unknown coefficients kγ  and jβ ; 2(0, )i N ηη σ∼  where 2 0ησ ≥  is an unobserved fixed effect; 

and 2
, (0, ),i t N εε σ∼  with 2 0εσ > , is a disturbance term. It is further assumed that (i) 

, ,( )i t j sE ε ε  for i j≠  or t s≠ , (ii) ( ) 0i jE ηη =  for i j≠ , (iii) ,( ) 0i j tE η ε =  , ,i j t∀ , (iv) 

, , , ,( ) ( ) 0i k t j i k t jE x E yη η= =  , , ,i j k t∀ , (v) , , ,( ) 0i k t j sE x ε =  , , , ,i j k t s∀ , (vi) , , ,( ) 0i k t j sE y ε =  

, , , ,i j k t s t∀ ≠ , (vii) ( ) ( ), , , 0i t j s i t jE b E bε η= = , , ,i j t s∀ . Assumption (vi) implies that , ,i k ty  

could potentially be correlated with the contemporaneous idiosyncratic disturbance, ,i tε , 
while (v) indicates that , ,i k tx  is strictly exogenous. Note that equation (2) indicates that 

, ,( ) 0i t i sE d ε <  for s t< , and assumptions (i), (iii)-(vii) indicate that , ,( ) 0i t i sE d ε =  for s t≥ . 
Two other key assumptions in the analytical derivations are that ,i tf ,i t∀ are deterministic 
constants and that ,i tf ρ>  ,i t∀ . The first assumption is made for simplicity, the second 
assumption is plausible since ,i tf  is typically close to or slightly larger than one, while most 
existing estimates suggest that ρ , the primary surplus response to debt accumulation, is less 
than 0.10. We relax the assumption that ,i tf are deterministic constants in the Monte Carlo 
simulations. 
 
It is well-known that the OLS estimator is inconsistent in the presence of individual-specific 
fixed effects in dynamic panel data models. In the estimation of equation (5), the presence of 

iη  would be expected to exert a downward bias on the OLS estimate of ρ  since the 
individual effects iη  and 1, −tid  are negatively correlated by equation (2). An analytical proof 
of the negative bias of the OLS estimator is provided in Appendix A for the case where  

kγ  = jβ = 0 ,j k∀ .  
 
The LSDV method is equivalent to applying the OLS estimator to data that is expressed in 
deviations from country-specific means. To analyze the asymptotic LSDV bias—where we 
refer to an expression of the form ˆplim ( )N ρ ρ→∞ − as a bias in the remainder of the paper—
we start by defining the following matrices, where each variable is expressed in deviations 
from its country-specific means over the time horizon:  
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, .[ ], 1t i t ip p p N= − ×  vector, 

1 , 1 . 1[ ], 1t i t id d d N− − −= − ×  vector, 

, , , .[ ],t i k t i kY y y N K= − ×  matrix, 

, , , .[ ],t i j t i jX x x N J= − ×  matrix, 

, .[ ], 1t i t i Nε ε ε= − ×  vector, 

1[ ... ] 1K Kγ γ γ= ×  vector, 

1[ ... ] 1J Jβ β β= ×  vector, 
 
where for any variable ,i tz , . ,1

(1/ ) T
i i tt

z T z
=

≡ ∑  and 1
. 1 ,0

(1/ ) T
i i tt

z T z−

− =
≡ ∑ . Using these 

matrices, we then rewrite equation (5) in deviation form as follows: 
 

1 ,t t t t tp d Y Xρ γ β ε−= + + +    t=1,...,T, 
 
and stack these equations over time horizons: 
 

1 ,p d Y X Z Xρ γ β ε δ β ε−= + + + = + +  
 
where 1[ ... ]'Tp p p= , 1 0 1[ ... ] 'Td d d− −= , and 1[ ... ]'Tε ε ε=  are NT×1  vectors, 1[ ... ]'TY Y Y=  

is a NT×K matrix, 1[ ... ]'TX X X=  is a NT×J matrix,  1[ ]Z d Y−=  is a  NT×(K+1) matrix, 

and [ ]'δ ρ γ=  is a (K+1)×1 vector. Further, we define ( ) 1
I ' 'M X X X X

−
≡ − , where I is 

the J J× identity matrix. The LSDV estimator for the coefficient vector δ is given as: 
 
 ( ) 1

' ' .Z MZ Z Mδ δ ε
−

= +  
 
We compute the asymptotic bias by taking probability limits as N →∞ : 
 

 ( ) ( )( ) 11
plim lim ' ' ' ' lim '
N N N

p Z Z Z X X X X Z p Zδ δ ε
−−

→∞ →∞ →∞
− = −  (6) 

 
since ( ), , , 0i k t j sE x ε =  , , , ,i j k t s∀ . We now study the sign of the bias expression given in 
equation (6) under alternative assumptions about the model. We first consider the simplest 
benchmark case where there are no regressors other than , 1i td −  in equation (5) and no 

independent shocks that affect public debt in equation (2), 2 0bσ = . Second we consider the 
case where there are exogenous shocks to public debt, 2 0bσ > . Third we consider the effect 
of exogenous regressors, and fourth we consider the implications of having endogenous 
regressors in the equation. 
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Case 1: 0γ β= =  and 2 0bσ = .  
In this benchmark specification we assume that there are no regressors other than 1, −tid  and 

there are no independent shocks that affect debt, i.e 2 0bσ =  in equation (2). In this simplest 

case, δ ρ= , 1Z d−= , and IM = . Then the policy reaction function and the debt dynamics 
equation can be rewritten as follows: 
 
 , , 1 ,i t i t i i tp dα ρ η ε−= + + + ,   t = 1, 2, …, T  and  i = 1, 2,…, N, (7) 
 , 1 , 1 , 2 , 1i t i t i t i td f d p− − − −= −   
 
The LSDV estimator of ρ  is:  
 

 
( )( )

( )

, 1 , 1 , .
1 1

2

, 1 , 1
1 1

ˆ

T N

i t i i t i
t i

T N

i t i
t i

d d p p

d d
ρ

− −
= =

− −
= =

− −
=

−

∑∑

∑∑
 (8) 

 
When T is kept fixed, the asymptotic bias of this estimator is given by: 
 

 
( )( )

( )

( )( )

( )

, 1 , 1 , . , 1 , 1 , .
1 1 1

2 2

, 1 , 1 , 1 , 1
1 1 1

1lim
ˆlim( ) ,

1lim

T N T

i t i i t i i i t i i t i
Nt i t

T N T
N

i t i i i t i
Nt i t

p d d E d d
Np

p d d E d d
N

ε ε ε ε
ρ ρ

− − − −
→∞= = =

→∞
− − − −

→∞= = =

− − − −
− = =

− −

∑ ∑ ∑

∑ ∑ ∑
 (9) 

 
where iE represents the expectation of a random variable taken across all countries for a 
fixed time period. Note that in the numerator of Equation (9), , 1 , 1( )i t id d− −− and , .( )i t iε ε−  are 
not orthogonal. Given equation (2), , 1i td −  is correlated positively with , 1 /i t Tε −−  in .iε− , ,i tε is 
positively correlated with , /i td T−  in , 1id −− , and , /i t Tε−  in .iε−  is negatively correlated with 
the terms , /i t sd T+− , s = 0,...,T-1-t  in , 1id −− . The magnitudes of these correlations and the 
expected bias decline with T, the time-dimension of the sample. Since the denominator of (9) 
is always positive by construction, the direction of the bias is determined by the sign of the 
numerator. As we are also interested in the size of the bias, however, we will also derive the 
analytical expression for the denominator. We first rewrite 1, −tid  and 1,−id  in MA 
representation. By substituting equation (7) in the debt dynamics equation and iterating, we 
get the MA representation for tid , :  
 

 , , , , , ,
0 0

i t i t j i i t j i t j
j j

d A Aη ε
∞ ∞

−
= =

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ , (10) 
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where 10,, =tiA  and ( )∏ −

= − −=
1

,,,
k

ol ltikti fA ρ  for 1≥k  and the constant α  is omitted without 

loss of generality. We then obtain the MA representation for 1, −tid  and 1,−id  as: 
 

 , 1 , 1, , 1, , 1
0 0

i t i t j i i t j i t j
j j

d A Aη ε
∞ ∞

− − − − −
= =

⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ , and (11) 

  

 
1

, 1 , , 1 , 1, , 1
0 1 1 0

1 1 1T T T

i i t i t i i t j i t j
t t t j

d d d A A
T T T

ε
− ∞

− − − − −
= = = =

= = = −∑ ∑ ∑∑ , (12) 

 

where ∑
=

−=
T

t
tii A

T
A

1
1,

1  and i
j

jtiti AA η⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

∞

=
−−

0
,1,1, . 

 
In Appendix I we prove that for the benchmark policy reaction function (7), the bias of the 
LSDV estimator, ˆlim( )

N
p ρ ρ

→∞
− , is positive and can be expressed as:  

 

 
( )( )

( ) ( )

2 1

, ,, 1 , 1 ,
1 01

2 22
, 1 , 1

1

0

T T tT

i t j ji i t i i t i
t jt

T

i i t i
t

AE d d T
Q R SE d d

ε

ε η

σ
ε ε

σ σ

− −

+− −
= ==

− −
=

− −
= >

+ +−

∑ ∑∑

∑
 (13) 

where 

∑ ∑ ∑∑ ∑∑
=

∞

= =
+−−−+−

−

=

+−

=
+−−−

∞

=
− ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

T

t j

T

k
jkTkTijtti

t

j

jtT

k
kkjtijti

j
jti AAAA

T
AQ

1 1 1
,,1,1,

1

0 0
,1,,1,

0

2
,1,

2  ,   

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑ ∑∑ ∑

∞

= =
+−−

−

= =
+−−

0

2

1
,,

2

0

2

0
,1,

1
j

T

k
jkTkTi

T

j

j

k
kkjTi AA

T
R , and 

 

∑ ∑∑∑
= =

∞

=
−

∞

=
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

T

t

T

s j
jsi

j
jti A

T
AS

1

2

1 0
,1,

0
,1,

1  

 
In contrast to the LSDV bias on the coefficient of the lagged dependent variable in the AR(1) 
model, the LSDV bias on ρ —the coefficient of lagged debt in equation (7)—is positive and 
decreasing in 2

ησ .8  
                                                 
8 By contrast the LSDV bias on ρ  in the AR(1) model is independent of 2

ησ . In the AR(1) model, the weights 
on the distributed lagged terms in the MA representation of the lagged dependent variable correspond to the 
powers of the autoregressive parameter ρ , which leads 2

ησ  to drop from the bias expression (Nickell, 1981).  
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Case 2: 0γ β= =  and 2 0bσ > . 

As in Case 1, δ ρ= , 1Z d−= , and IM = . However, since now ,i tb  is included in the debt 
accumulation equation (2), the MA representation of ,i td  becomes: 
 

, , , , , , , , ,
0 0 0

i t i t j i i t j i t j i t j i t j
j j j

d A A A bη ε
∞ ∞ ∞

− −
= = =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ . 

 
Following the same steps in the proof for Case 1, we obtain the asymptotic bias as: 
 

 

( ) ( )

( )( )

( ) ( )( )

1

1 1 1

2 1

, ,, 1 , 1 ,
1 01

2 2 22
, 1 , 1

1

ˆlim lim ' lim '

,

N N N

T T tT

i t j ji i t i i t i
t jt

T
b

i i t i
t

p p d d p d

AE d d T
Q R SE d d

ε

ε η

ρ ρ ε

σ
ε ε

σ σ σ

−

− − −
→∞ →∞ →∞

− −

+− −
= ==

− −
=

− =

− −
= =

+ + +−

∑ ∑∑

∑

 (14) 

 
since ( ) ( ), , , 0i i t j s i i t jE b E bε η= = , , ,i j t s∀  by assumption (vii). Notice that the only difference 

from the bias in Case 1 is the addition of ( )2
b Q Rσ +  to the denominator. Thus, if Q+R>0, the 

bias remains positive in Case 2 and equation (14) would then imply that the larger is 2
bσ , the 

larger is the denominator, therefore the smaller is the bias. Intuitively, a larger 2
bσ  implies 

that past primary balance shocks, ,i t sε − , 1s > , account for a smaller share of the total 

variance of debt, , 1i td − . A larger 2
bσ  is therefore likely to reduce the magnitude of the LSDV 

bias, which is increasing in the correlation between past primary balance shocks and debt. 
However, since it can not be shown analytically that Q+R>0, we study the implications of 

2 0bσ >  in our Monte Carlo simulations. 
 
Case 3: 0, 0γ β= ≠  and 2 0bσ = . 

In this case, exogenous regressors are included in the model, so δ = ρ , 1Z d−= , and 

( ) 1
I ' 'M X X X X

−
= − . The bias is given as: 

 

( ) ( )

( )( )

1

1 1 1

11

1 1 1 1 1

ˆlim lim ' lim '

lim ' ' ' ' lim ' .

N N N

N N

p p d Md p d

p d d d X X X X d p d

ρ ρ ε

ε

−

− − −
→∞ →∞ →∞

−−

− − − − −
→∞ →∞

− =

= −
 

 
The bias in this case is larger than in Case 1, as the inclusion of M <I reduces the 
denominator: 
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 ( )( ) ( )1

1 1 1 1 1 1lim ' ' ' ' lim ' ,
N N
p d d d X X X X d p d d

−

− − − − − −
→∞ →∞

− <  

 

since the matrix ( ) 1
' 'X X X X

−
 is positive semidefinite.  

 
Case 4: 0, 0γ β≠ =  and 2 0bσ = . 
In this case, endogenous regressors are included in the model. Using the formula for the 
inverse of block matrices, we can rewrite the bias expression in equation (6) as follows: 
 

( ) ( )

( )
( ) ( ) ( )

1

1

1 1 1 1

1

11 1
1

1 1 11 1
1 1 1

lim lim ' lim '

' ' 'lim lim
'' '

' '
lim

' ' ' (I ' ' '

N N N

N N

N

p p Z Z p Z

d d d Y dp p
YY d Y Y

P P d Y Y Y
p

Y Y Y d P Y Y Y d P d Y Y Y

δ δ ε

ε
ε

−

→∞ →∞ →∞

−

− − − −

→∞ →∞
−

−− −
−

− − −− −→∞
− − −

− =

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞−⎜ ⎟= ⎜ ⎟⎜ ⎟− +⎝ ⎠

1 'lim ,
'N

dp
Y

ε
ε

−

→∞

⎛ ⎞
× ⎜ ⎟

⎝ ⎠

 

 
where ( ) 1

1 1 1 1' ' ' 'P d d d Y Y Y Y d
−

− − − −≡ − . The asymptotic bias, ( )ˆlim
N
p ρ ρ

→∞
− , can then be 

expressed as follows: 
 

( ) ( ) 11 1
1 1ˆlim lim lim ' lim ' ' lim '

N N N N N
p p P p d p P d Y Y Y p Yρ ρ ε ε

−− −
− −

→∞ →∞ →∞ →∞ →∞
− = − . 

 
The first term of the above expression, 1

1lim lim '
N N
p P p d ε−

−
→∞ →∞

, is greater than the 

corresponding term in the bias expression for Case 1, 1
1 1 1lim( ' ) lim '

N N
p d d p d ε−

− − −
→∞ →∞

, since 

( ) 1
' 'Y Y Y Y

−
 is positive semi definite and 1 1'P d d− −< . The sign of the second term, 

( ) 11
1lim ' ' '

N
p P d Y Y Y Y ε

−−
−

→∞
, is determined by the correlation structures between , ,i k ty , 

, 1i td − and ,i tε . As a result, the presence of endogenous regressors has an ambiguous effect on 
the size and sign of the LSDV bias on ρ . 
 
The four cases studied above suggest that the use of country-specific dummy variables in the 
estimation of equation (5) would be expected to exert a positive bias on the estimate of ρ  
when the time dimension of the panel is small. The presence of exogenous shocks to debt 
( ,i tb ) is likely to reduce the magnitude of this bias, whereas the inclusion of exogenous 
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regressors in the fiscal reaction function increases the expected magnitude of the bias. It is 
not possible to analytically determine the effect of endogenous regressors on the direction or 
size of the LSDV bias. If such endogenous regressors are instrumented, however, the use of 
country dummies would still be expected to exert a positive bias on the estimate of ρ . In 
sum, the true value of ρ  would be expected to lie between the downward-biased OLS 
estimate and the upward-biased estimate obtained using the LSDV method (with 
instrumentation of any potentially endogenous regressors).  
 
In empirical estimations of the model, these complications that we have studied as different 
cases are likely to be present simultaneously. The next section uses Monte Carlo simulations 
to evaluate the size and direction of the expected bias under various complications to the 
model. 
 
 

III.   MONTE CARLO EXPERIMENTS 

This section uses a Monte Carlo approach to assess the expected LSDV bias in estimating 
equation (5) under various model assumptions. Since the main point of reference for the 
potential LSDV bias in dynamic panel data models is the much-studied bias in the canonical 
AR(1) model, we first evaluate the biases on the parameter estimates of equation (5) against 
the benchmark of the biases in a comparable AR(1) model given in equation (3). We then 
examine how altering various aspects of equation (5) changes the biases of various 
estimators. 
 
For the comparison of the LSDV bias in equations (3) and (5), we try to keep the models as 
similar as possible. In both equations, we assume that there is only one exogenous 
explanatory variable ,i tx , generated by the following process: 

 2
, , 1 , , (0, ).i t i t i t i tx x N ξλ ξ ξ σ−= + ∼  (15) 

Kiviet (1995), who evaluates alternative estimators for the AR(1) model and also assumes 
that ,i tx  is generated by equation (15), shows that the LSDV bias in estimating equation (3) 
depends on the signal-to-noise ratio of the relationship, defined as: 
 

 

2
, ,

12 2
2 2 2 2

2

1var( )
1

( )1 [ 1] ( ) .
1 1

s i t i i tp

ξ ε

σ η ε
ρ

ρ λ ρβ σ ρλ ρλ σ
ρλ ρ

−

= − −
−

⎡ ⎤+
= + − − +⎢ ⎥+ −⎣ ⎦

 (16) 

 
In the case of the AR(1) model, the higher is 2

sσ , the more powerful is ,i tx  in explaining ,i tp . 
Kiviet (1995) shows that the bias of the LSDV estimator is decreasing in the signal-to-noise 
ratio. We evaluate the LSDV bias in estimating equations (3) and (5) with equal signal-to-
noise ratios so that the difference in expected biases can be attributed mainly to differences in 
the functional form of the two specifications. For equation (5) we assume that ,i tf f=  

,i t∀ for simplicity and we define the signal-to-noise ratio as follows: 
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2
1 1 1

0

22 22
2 2 2 2 1 2

2 2 2

1var( ) var ( ) [ ]
1

( )[1 (1 ) ( ) ]
1 (1 ) 1 1

j
s it i it t j t j t j it

j

b

fp f b x x
f

ξε
ξ

σ η ε ρ ρ β ε β
ρ

σσ σθ λρ β σ θλ θλ β
θ θλ θ λ

∞

− − − − − −
=

−

⎡ ⎤−
= − − = − − − +⎢ ⎥− + ⎣ ⎦

⎡ ⎤+
= + − − − + +⎢ ⎥− + − −⎣ ⎦

∑
 (17) 

 
where fθ ρ= − . As in Kiviet’s definition, the signal-to-noise ratio of the relationship is the 
variance of the dependent variable attributable to factors other than the cumulative impact of 
the fixed-effect, iη , and the contemporaneous idiosyncratic disturbance, itε . 
 
In our first set of simulations, we generate data using the processes in equations (3) and (5), 
where (2) is used to generate data for , 1i td − . We follow broadly the elements of Kiviet’s 
(1995) simulation design. We allow ρ  to alternate between 0.1 and 0.4, in the lower range of 
Kiviet’s parameters, which are more realistic for fiscal reaction functions. In each case, we 
run simulations for two values of the signal-to-noise ratio, 2

sσ : 2 and 8. λ  is set to 0.5 in all 
simulations.β  is set to 1 ρ−  so that in equation (3) a change in ρ  only affects the short run 
dynamic relationship between ,i tp  and ,i tx , and not the steady-state relationship. For equation 
(5), we set , 1.05i tf =  ,i t∀  for simplicity. As in one of Kiviet’s (1995) simulation designs we 

set (1 )η εσ σ ρ= −  for equation (3) and (1 )
1

f
f

ε
η

σ ρσ − +
=

−
 for equation (5), so that the 

idiosyncratic disturbance and the individual effect contribute equally to the variance of ,i tp  

in both equations. Thus, given the choices for ρ , 2
εσ , 2

sσ , β , and λ , and setting 2 0bσ =  for 
comparability, the only remaining parameter of the model— 2

ξσ —is determined by equations 
(16) and (17). We set 100N = , and run 1000 simulations for different time series lengths: T 
= 5, 10, 20, and 30.9 For each run, we estimate equations (3) and (5) using the OLS and 
LSDV estimators, and report the average of the estimated parameters and standard errors 
across the 1000 simulation runs. 
 
The results are summarized in Table 1. They confirm that the OLS estimator is upward 
biased and the LSDV estimator is downward biased for ρ  in the AR(1) model (3). By 
contrast, and these estimators lead to negatively and positively biased estimates of ρ , 
respectively, in the fiscal reaction function model (5).10 While in both equations, the LSDV 
bias declines with the signal-to-noise ratio and with T, the LSDV biases in equation (5) are 
smaller in absolute value than they are in equation (3) for a 
 
                                                 
9 We set ,0 ,0 0i id x= =  and discard the first 51 observations of the series.  

10 Kiviet (1995) investigates samples of size T=3, 6. Our estimated bias magnitudes for equation (3) when T=5 
are close to those reported in Kiviet (1995) for T=6. 
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Table 1. Estimates of Equation (3) 
 

      OLS 
      ρ̂  β̂  

M N T ρ  β  2
sσ  Estimate Bias S.E. Estimate Bias S.E. 

1000 100 5 0.1 0.9 2 0.4236 0.3236 0.0402 0.6589 -0.2411 0.0569 
1000 100 5 0.1 0.9 8 0.2842 0.1842 0.0322 0.7627 -0.1373 0.0351 
1000 100 5 0.4 0.6 2 0.5945 0.1945 0.0322 0.4735 -0.1265 0.0465 
1000 100 5 0.4 0.6 8 0.5106 0.1106 0.0264 0.5280 -0.0720 0.0269 
1000 100 10 0.1 0.9 2 0.4211 0.3211 0.0357 0.6565 -0.2435 0.0562 
1000 100 10 0.1 0.9 8 0.2802 0.1802 0.0281 0.7633 -0.1367 0.0309 
1000 100 10 0.4 0.6 2 0.5925 0.1925 0.0274 0.4705 -0.1295 0.0406 
1000 100 10 0.4 0.6 8 0.5068 0.1068 0.0224 0.5281 -0.0719 0.0233 
1000 100 20 0.1 0.9 2 0.4218 0.3218 0.0332 0.6622 -0.2378 0.0456 
1000 100 20 0.1 0.9 8 0.2808 0.1808 0.0259 0.7663 -0.1337 0.0281 
1000 100 20 0.4 0.6 2 0.5935 0.1935 0.0243 0.4742 -0.1258 0.0366 
1000 100 20 0.4 0.6 8 0.5078 0.1078 0.0200 0.5298 -0.0702 0.0210 
1000 100 30 0.1 0.9 2 0.4204 0.3204 0.0324 0.6631 -0.2369 0.0425 
1000 100 30 0.1 0.9 8 0.2790 0.1790 0.0249 0.7676 -0.1324 0.0264 
1000 100 30 0.4 0.6 2 0.5927 0.1927 0.0233 0.4743 -0.1257 0.0341 
1000 100 30 0.4 0.6 8 0.5067 0.1067 0.0187 0.5304 -0.0696 0.0198 

            
      LSDV 

      ρ̂  β̂  

M N T ρ  β  2
sσ  Estimate Bias S.E. Estimate Bias S.E. 

1000 100 5 0.1 0.9 2 -0.0327 -0.1327 0.0339 0.9430 0.0430 0.0701 
1000 100 5 0.1 0.9 8 0.0346 -0.0654 0.0282 0.9212 0.0212 0.0351 
1000 100 5 0.4 0.6 2 0.1840 -0.2160 0.0386 0.6421 0.0421 0.0683 
1000 100 5 0.4 0.6 8 0.2851 -0.1149 0.0317 0.6224 0.0224 0.0323 
1000 100 10 0.1 0.9 2 0.0369 -0.0631 0.0237 0.9309 0.0309 0.0450 
1000 100 10 0.1 0.9 8 0.0705 -0.0295 0.0199 0.9144 0.0144 0.0238 
1000 100 10 0.4 0.6 2 0.2926 -0.1074 0.0261 0.6362 0.0362 0.0439 
1000 100 10 0.4 0.6 8 0.3473 -0.0527 0.0211 0.6177 0.0177 0.0217 
1000 100 20 0.1 0.9 2 0.0657 -0.0343 0.0207 0.9210 0.0210 0.0387 
1000 100 20 0.1 0.9 8 0.0843 -0.0157 0.0173 0.9096 0.0096 0.0211 
1000 100 20 0.4 0.6 2 0.3382 -0.0618 0.0215 0.6300 0.0300 0.0379 
1000 100 20 0.4 0.6 8 0.3710 -0.0290 0.0173 0.6141 0.0141 0.0192 
1000 100 30 0.1 0.9 2 0.0754 -0.0246 0.0191 0.9162 0.0162 0.0355 
1000 100 30 0.1 0.9 8 0.0889 -0.0111 0.0161 0.9073 0.0073 0.0196 
1000 100 30 0.4 0.6 2 0.3534 -0.0466 0.0192 0.6255 0.0255 0.0348 
1000 100 30 0.4 0.6 8 0.3787 -0.0213 0.0158 0.6116 0.0116 0.0179 
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Table 1 (Concluded). Estimates of Equation (3) 
 

      OLS 
      ρ̂  β̂  

M N T ρ  β  2
sσ  Estimate Bias S.E. Estimate Bias S.E. 

1000 100 5 0.1 0.9 2 0.0579 -0.0421 0.0026 0.8524 -0.0476 0.0379 
1000 100 5 0.1 0.9 8 0.0894 -0.0106 0.0021 0.8880 -0.0120 0.0145 
1000 100 5 0.4 0.6 2 0.0554 -0.3446 0.0031 0.3080 -0.2920 0.0206 
1000 100 5 0.4 0.6 8 0.1066 -0.2934 0.0091 0.3513 -0.2487 0.0156 
1000 100 10 0.1 0.9 2 0.0580 -0.0420 0.0021 0.8390 -0.0610 0.0330 
1000 100 10 0.1 0.9 8 0.0891 -0.0109 0.0019 0.8841 -0.0159 0.0126 
1000 100 10 0.4 0.6 2 0.0558 -0.3442 0.0025 0.2876 -0.3124 0.0165 
1000 100 10 0.4 0.6 8 0.1112 -0.2888 0.0087 0.3377 -0.2623 0.0159 
1000 100 20 0.1 0.9 2 0.0583 -0.0417 0.0018 0.8223 -0.0777 0.0297 
1000 100 20 0.1 0.9 8 0.0891 -0.0109 0.0017 0.8795 -0.0205 0.0105 
1000 100 20 0.4 0.6 2 0.0557 -0.3443 0.0021 0.2954 -0.3046 0.0153 
1000 100 20 0.4 0.6 8 0.1101 -0.2899 0.0082 0.3433 -0.2567 0.0138 
1000 100 30 0.1 0.9 2 0.0588 -0.0412 0.0018 0.8111 -0.0889 0.0267 
1000 100 30 0.1 0.9 8 0.0894 -0.0106 0.0017 0.8769 -0.0231 0.0089 
1000 100 30 0.4 0.6 2 0.0558 -0.3442 0.0018 0.2916 -0.3084 0.0138 
1000 100 30 0.4 0.6 8 0.1113 -0.2887 0.0078 0.3411 -0.2589 0.0124 

            
      LSDV 

      ρ̂  β̂  

M N T ρ  β  2
sσ  Estimate Bias S.E. Estimate Bias S.E. 

1000 100 5 0.1 0.9 2 0.2012 0.1012 0.0209 0.8967 -0.0033 0.0570 
1000 100 5 0.1 0.9 8 0.1076 0.0076 0.0057 0.8998 -0.0002 0.0146 
1000 100 5 0.4 0.6 2 0.5521 0.1521 0.0329 0.6213 0.0213 0.0413 
1000 100 5 0.4 0.6 8 0.4141 0.0141 0.0102 0.6020 0.0020 0.0102 
1000 100 10 0.1 0.9 2 0.1374 0.0374 0.0120 0.8911 -0.0089 0.0360 
1000 100 10 0.1 0.9 8 0.1026 0.0026 0.0031 0.8994 -0.0006 0.0089 
1000 100 10 0.4 0.6 2 0.4703 0.0703 0.0217 0.6195 0.0195 0.0272 
1000 100 10 0.4 0.6 8 0.4060 0.0060 0.0064 0.6017 0.0017 0.0066 
1000 100 20 0.1 0.9 2 0.1171 0.0171 0.0079 0.9002 0.0002 0.0308 
1000 100 20 0.1 0.9 8 0.1012 0.0012 0.0020 0.9000 0.0000 0.0076 
1000 100 20 0.4 0.6 2 0.4372 0.0372 0.0155 0.6199 0.0199 0.0242 
1000 100 20 0.4 0.6 8 0.4030 0.0030 0.0046 0.6016 0.0016 0.0060 
1000 100 30 0.1 0.9 2 0.1104 0.0104 0.0063 0.9044 0.0044 0.0279 
1000 100 30 0.1 0.9 8 0.1007 0.0007 0.0016 0.9003 0.0003 0.0069 
1000 100 30 0.4 0.6 2 0.4260 0.0260 0.0137 0.6173 0.0173 0.0224 
1000 100 30 0.4 0.6 8 0.4021 0.0021 0.0042 0.6014 0.0014 0.0055 
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given combination of the signal-to-noise ratio and ρ . In the estimations of equation (5) from 
samples with 10T ≥ , the LSDV bias is smaller than 10 percent of the true value of ρ  and 
affects only the second decimal of the estimate. Further, the LSDV bias in equation (5) seems 
particularly sensitive to the signal-to-noise ratio: the ρ  bias when 2 8sσ =  is typically less 
than one tenth of the bias when 2 2sσ = , whereas in equation (3), the ρ  bias when 2 8sσ =  is 
about half of the bias when 2 2sσ = . So factors that increase the signal to noise ratio of the 
fiscal reaction function equation, such as the presence of shocks to debt, ,i tb  with 2

bσ >0, 
would be expected to further decrease the relative LSDV bias in estimating equation (5). 
 
The next set of Monte Carlo experiments focus on the estimation of equation (5), allowing 
for various realistic complications to the model. We calibrate the parameters of equation (5) 
to data available for a panel of emerging market countries for the period 1990-2004.11 The 
sample dimensions are fixed at 30N =  and 15T = , corresponding approximately to the 
currently available sample size for fiscal debt and deficits in emerging market economies. As 
time series data indicates that real interest rates typically exceed real growth rates by several 
percentage points in emerging market countries, f  is drawn from a uniform distribution 
between 0.95 and 1.10. If we set f = 1.025, at the mid-point of that range, the debt 
accumulation identity suggests that , , , , 11.025i t i t i t i tb d p d −= + − , which approximately has a 

mean equal to zero and standard deviation bσ equal to 11 in the full sample, and a standard 
deviation equal to 4 if values of ,i tb  that exceed minus or plus 10 percent of GDP are 
excluded. Estimating equation (15) on output gap data for the set of countries included in the 
same dataset, using OLS, LSDV, and the Blundell and Bond (1998) system-GMM estimator 
(using twice lagged levels and differences of the output gap as instruments) suggests that λ is 
approximately 0.50, and 3ξσ = . Finally, estimating equation (1) with lagged debt and the 
output gap as the two explanatory variables and with country dummies yields a coefficient 
β = 0.35 on the output gap when the output gap is instrumented, and a coefficient of 
β = 0.20 when the output gap is not instrumented. The standard deviation of country fixed 
effects is estimated to be 2.8ησ =  and the standard deviation of disturbances to be 

2.5εσ = .12 Finally, a large number of regressions using different techniques suggest ρ  to be 
between 0.02 and 0.06 in emerging market economies (Celasun, Debrun, and Ostry, 2006).  

                                                 
11 The dataset is described in Celasun, Debrun, and Ostry (2006). 

12 That β  is estimated to be larger with instrumentation indicates that primary surplus disturbances, ,i tε  have a 

negative impact on the output gap, ,i ty .  
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Based on these findings, we consider three scenarios, for which we consider four values of 
ρ , ρ  = 0, 0.03, 0.06, 0.09. Other than the use of the data-consistent parameter values as 
described above, the scenarios allow for the following “incremental” complications relative 
to the version of the model studied in Table 1. In the first scenario, rather than setting ,i tf  = 
1.05 ,i t∀ as in the simulations in Table 1, we draw ,i tf  from a uniform distribution between 

[0.95,1.10], but we still set the mean and variance of shocks to debt to zero, 0bσ = , and 
assume that the output gap is exogenous to primary surplus shocks, 0.pyσ =  In the second 
scenario, we relax the second assumption; shocks to the debt accumulation equation ,i tb  are 

drawn from a normal distribution with zero mean and a standard deviation of  bσ  = 5 (which 
is close to the standard deviation of ,i tb  in the data when outliers are excluded). In the third 
scenario, we additionally allow the output gap to be endogenous. The following equation is 
used to generate the output gap series in the third scenario: 
 
 , , , , 0.i t i t py i t pyy x σ ε σ= + ≤  (18) 
 
where ,i tx  is generated using equation (15). The parameter values used in the three scenarios 
are summarized in Table 2. 
 
 

Table 2. Parameter Values Used in Simulations 
 
Scenario ρ  β  εσ  ησ  f  λ  ξσ  bσ  pyσ  

I 0.0, 0.03, 0.06, 0.09 0.35 2.5 2.8 Uniform[0.95,1.1] 0.5 3 0 0 

II 0.0, 0.03, 0.06, 0.09 0.35 2.5 2.8 Uniform[0.95,1.1] 0.5 3 5 0 

III 0.0, 0.03, 0.06, 0.09 0.35 2.5 2.8 Uniform[0.95,1.1] 0.5 3 5 -0.01 

 
 
In each simulation run for scenarios I and II, we generate the data using equations (2), (5), 
and (15). For scenario III, we generate the data using equations (2), (5), (15) and (18). In 
scenarios I and II, we estimate equation (5) using the following techniques: OLS, LSDV, 
Arellano and Bond’s (1991) one-step GMM estimator (GMM), Blundell and Bond’s (1998) 
one-step system GMM estimator (SGMM), and Blundell and Bond’s (1998) one-step system 
GMM estimator using only the second and third lags of debt as instruments for 

, 1i td − (SGMMR). For scenario III, where the output gap is endogenous to contemporaneous 
primary balance shocks, instead of LSDV we use a two stage least squares estimator  that 
includes country fixed effects and instruments for the output gap ,i ty  with ,i tx (LSDVIV). 
 
The results, given in Table 3, indicate that the true value of ρ  lies between the average OLS 
and LSDV (LSDVIV in Scenario III) estimates in the 1000 runs. The size of LSDV bias in 
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estimating ρ  does not necessarily increase with the value of ρ  itself, as it does in the AR(1) 
model (Judson and Owen 1999). As a percentage of the true value of ρ , the bias is larger in 
scenario I than in scenarios II and III, where the bias is typically around 30 percent or less. 
This confirms the conjecture in Case 2 of the analytical derivations: the presence of 
independent shocks to debt, ,i tb , reduce the bias of the LSDV estimator. All estimators yield 
a very small estimate of ρ  when the true value of ρ  is zero, so none of the estimators would 
erroneously indicate debt sustainability ( ρ̂ >0) when in fact the primary surplus is not 
responsive to debt accumulation ( 0ρ = ). The LSDV and LSDVIV estimators have the 
lowest bias and the lowest RMSE for ρ , while GMM is a close runner up. The SGMM 
estimates of ρ  are severely negatively biased, as are the OLS estimates.  
 
While the presence of endogenous—as opposed to exogenous—regressors does not 
significantly alter the size of the bias in estimating ρ , it vastly increases the RMSE of all 
estimators of β , the coefficient on the endogenous variable. The RMSE of the LSDVIV 
estimator of β  is particularly high, most likely due to the use of a high number of 
instruments—including the country dummies—in the first stage.13 So while the use of 
country dummies—the LSDV or LSDVIV estimations—yields the most precise estimator of 
ρ , it leads to the largest bias in the estimates of β , for which the GMM and SGMM 
estimators have the lowest RMSE. 
 
 

IV.    CONCLUSION 

The Monte Carlo simulations in the paper suggest that the use of country dummies does not 
lead to economically large biases in the estimates of ρ , the coefficient of lagged debt in the 
fiscal reaction function model (1); the LSDV method yields more precise estimates of ρ  
compared with OLS and the Arellano and Bond (1991) and Blundell and Bond (1998) GMM 
methods. If other regressors in the fiscal reaction function such as the output gap are 
potentially endogenous to contemporaneous primary balance shocks and would need to be 
instrumented, however, the Arellano and Bond (1991) and Blundell and Bond (1998) GMM 
estimators—where the difference or level of debt is instrumented with the lagged levels or 
differences in debt and exogenous instruments are used for the potentially endogenous 
regressors—are the best-performing estimators for the coefficients of the endogenous 
variables. These results suggest estimating the fiscal reaction functions using the LSDV or 
the Arellano and Bond (1991) and Blundell and Bond (1998) GMM methods, depending on 
the variable and coefficient estimate of interest. Although tests of intertemporal solvency 
would preferably be based on LSDV methods, tests of fiscal policy countercyclicality would 
preferably be based on GMM methods using exogenous instruments for the output gap. 

                                                 
13 See Stock and Yogo (2005) for a discussion of the weak instruments problem and related 
tests. 
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Table 3. Estimates of Parameters of Equation (5), Various Scenarios 
 

ρ̂   β̂  

OLS LSDV GMM SGMM SGMMR  OLS LSDV GMM SGMM SGMMR 
(S.E.) (S.E.) (S.E.) (S.E.) (S.E.)  (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) 

[RMSE] [RMSE] [RMSE] [RMSE] [RMSE]  [RMSE] [RMSE] [RMSE] [RMSE] [RMSE] 
Scenario I 

0.00ρ =  

-0.008 0.001 0.000 -0.007 -0.007  0.344 0.349 0.348 0.348 0.348 
(0.000) (0.002) (0.003) (0.000) (0.000)  (0.056) (0.058) (0.072) (0.059) (0.060) 
[0.008] [0.003] [0.003] [0.007] [0.007]  [0.056] [0.058] [0.072] [0.059] [0.060] 

0.03ρ =  

0.010 0.050 0.041 0.011 0.012  0.346 0.345 0.347 0.350 0.349 
(0.001) (0.011) (0.016) (0.001) (0.002)  (0.057) (0.058) (0.072) (0.059) (0.060) 
[0.020] [0.023] [0.020] [0.019] [0.018]  [0.057] [0.059] [0.072] [0.059] [0.060] 

0.06ρ =  

0.021 0.138 0.147 0.023 0.024  0.345 0.334 0.335 0.350 0.349 
(0.002) (0.030) (0.057) (0.003) (0.006)  (0.057) (0.059) (0.071) (0.060) (0.061) 
[0.039] [0.084] [0.104] [0.037] [0.036]  [0.057] [0.061] [0.072] [0.060] [0.061] 

0.09ρ =  

0.026 0.202 0.241 0.029 0.032  0.341 0.333 0.326 0.350 0.347 
(0.003) (0.040) (0.076) (0.007) (0.011)  (0.056) (0.059) (0.069) (0.060) (0.061) 
[0.064] [0.119] [0.169] [0.062] [0.059]  [0.057] [0.062] [0.073] [0.060] [0.061] 

Scenario II 

0.00ρ =  

-0.007 0.001 0.000 -0.007 -0.007  0.336 0.350 0.348 0.344 0.344 
(0.000) (0.002) (0.003) (0.000) (0.001)  (0.061) (0.058) (0.072) (0.060) (0.061) 
[0.007] [0.002] [0.003] [0.007] [0.007]  [0.062] [0.058] [0.072] [0.060] [0.061] 

0.03ρ =  

0.011 0.040 0.037 0.012 0.013  0.340 0.347 0.348 0.346 0.347 
(0.001) (0.010) (0.015) (0.002) (0.002)  (0.058) (0.059) (0.071) (0.059) (0.061) 
[0.019] [0.014] [0.017] [0.019] [0.017]  [0.059] [0.059] [0.071] [0.059] [0.061] 

0.06ρ =  

0.022 0.080 0.092 0.023 0.026  0.342 0.346 0.344 0.348 0.348 
(0.002) (0.017) (0.036) (0.004) (0.006)  (0.057) (0.059) (0.071) (0.059) (0.061) 
[0.038] [0.026] [0.048] [0.037] [0.034]  [0.058] [0.059] [0.071] [0.059] [0.061] 

0.09ρ =  

0.029 0.110 0.127 0.032 0.038  0.341 0.346 0.344 0.348 0.348 
(0.003) (0.018) (0.039) (0.008) (0.012)  (0.058) (0.059) (0.071) (0.060) (0.062) 
[0.061] [0.027] [0.054] [0.059] [0.054]  [0.059] [0.059] [0.071] [0.060] [0.062] 
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Table 3 (Concluded). Estimates of Parameters of Equation (5), Various Scenarios 

 
ρ̂  β̂  

OLS LSDVIV GMM SGMM SGMMR OLS LSDVIV GMM SGMM SGMMR
(S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.) 

[RMSE] [RMSE] [RMSE] [RMSE] [RMSE] [RMSE] [RMSE] [RMSE] [RMSE] [RMSE] 

Scenario III

0.00ρ =  

-0.007 0.001 0.000 -0.007 -0.007 0.362 0.346 0.372 0.354 0.247 
(0.000) (0.002) (0.003) (0.000) (0.001) (0.360) (1.768) (0.641) (0.598) (1.046) 
[0.008] [0.002] [0.003] [0.007] [0.007] [0.360] [1.767] [0.641] [0.598] [1.051] 

0.03ρ =  

0.011 0.039 0.037 0.011 0.012 0.358 0.343 0.368 0.351 0.289 
(0.001) (0.010) (0.016) (0.002) (0.002) (0.363) (1.780) (0.519) (0.507) (0.873) 
[0.019] [0.014] [0.017] [0.019] [0.018] [0.363] [1.779] [0.519] [0.507] [0.875] 

0.06ρ =  

0.021 0.079 0.091 0.023 0.025 0.357 0.332 0.361 0.348 0.314 
(0.002) (0.018) (0.036) (0.004) (0.006) (0.370) (1.796) (0.473) (0.482) (0.872) 
[0.039] [0.026] [0.048] [0.038] [0.036] [0.370] [1.796] [0.473] [0.482] [0.872] 

0.09ρ =  

0.028 0.110 0.126 0.030 0.035 0.358 0.329 0.358 0.351 0.323 
(0.003) (0.019) (0.040) (0.007) (0.012) (0.382) (1.797) (0.463) (0.491) (0.928) 
[0.062] [0.027] [0.053] [0.060] [0.056] [0.382] [1.796] [0.463] [0.490] [0.928] 

 
Notes: GMM and SGMM denote the Arellano and Bond (1991) and Blundell and Bond (1998) one-step 
difference and one-step system GMM estimators, respectively. SGMMR is the Blundell and Bond (1998) one 
step system GMM estimator where only the second and third lags of , 1i td −  are used as instruments; GMM and 
SGMM instruments start at the second lag. The LSDVIV estimator for scenario III is a two stage least squares 
estimator that instruments for ,i ty  using ,i tx  and includes country dummies. The standard errors and the RMSE 
of the estimates are given in parentheses and brackets, respectively. All parameter values other than ρ  are 
given in Table 2. Each Monte Carlo experiment consists of 1,000 draws. 
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I. Bias of OLS Estimator When 0γ β= =  and 2 0bσ =  
 
In the case where 0γ β= =  and 2 0bσ = , the OLS estimator is given by: 
 

( ) ( ), 1 , , 1 , 1 , , 1 ,
1 1 1 1 1 1

2 2 2
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1 1 1 1 1 1

1 1 1
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So, the bias of the OLS estimator is: 
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1 1
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We use the MA representation for , 1i td − , to simplify the numerator and denominator: 
2 2

, 1 , 1, , 1, , 1 , 1, 1 ,0
0 0

t t

i t i t j i i t j i t j i t t i
j j

d A A A dη ε
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where 10,, =tiA  and ( )1
, , ,0

k
i t k i t ll

A f ρ−

−=
= −∏  for 1≥k . Plugging this expression into the 

numerator yields:  

( )
2

2
, 1, , 1, 1 ,0

1 0 1

1 1 cov ,
T t T

i t j i t t i i
t j t

A A d
T Tησ η

−

− − −
= = =

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑∑ ∑  

 
Similarly, the denominator of the bias can be rewritten as follows: 
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Since ,0id  are assumed to be either nonstochastic or generated by the same process as ,i td ,  

( ),0cov ,i id η  is either zero or negative. In addition, assuming that the initial values are 

bounded, that is 2
,0

1

1lim
N

i
N i
p d

N→∞ =

< ∞∑ , implies that the OLS estimator is downward biased. 
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A.   Bias of LSDV Estimator in Case 1 ( 0γ β= =  and 2 0bσ = ) 

We consider the numerator of the bias term first, in particular the terms inside the 
summation over the time horizon. Since ( ) 0,1, =− titii dE ε  by construction, the denominator is 
decomposed into three parts as follows: 
 

( )( ) ( ) ( ) ( )iiitiiiitiiitiitii dEdEdEddE εεεεε 1,,1,1,,1,1, −−−−− +−−=−−  .  
 
We calculate each term on the right-hand side as follows.  
 
First term: ( ) 00, =− iii dE ε  when t=1 since 0,id  is given. When t>1, the following holds:  
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Second term: 
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Third term: 
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Noting that the third term is constant for t=1,…,T, we simplify the summation of the three 
terms across all time horizons as follows: 
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where we note that ( ) 01, =− itii dE ε  when t=1 in the third equality above. Thus, the numerator 
of the bias term is positive. 
 
Using the MA representation of 1, −tid  and 1,−id , we then rewrite the terms inside the 
summation in the denominator of the bias: 
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Taking similar steps similar to those for the numerator, we calculate each of the above four 
terms as follows: 
 
First term: 
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Second term: 
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Fourth term: 
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Noting that the fourth term is constant for t = 1,…, T, we calculate the summation of the 
above four terms over all time horizons as follows: 
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Combining the numerator and denominator given above yields the expression (1.13) in the 
text. 
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