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We present a framework to derive the probability of default implied by the price of equity 
options. The framework does not require any strong statistical assumption, and provide 
results that are informative on the expected developments of balance sheet variables, such as 
assets, equity and leverage, and on the Greek letters (delta, gamma and vega). We show how 
to extend the framework by using information from the price of a zero-coupon bond and 
CDS-spreads. In the episode of the collapse of Bear Stearns, option-iPoD was able to early 
signal market sentiment. 
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I.   INTRODUCTION 

This paper develops a framework to derive a market-based measure of probability of default. 

The probability of default is inferred from equity options, by applying the principle of 

minimum cross-entropy, Cover and Thomas (2006). Contrary to other approaches based on 

option prices, such as Hull et al. (2004), we do not impose any distributional assumption on 

the asset whose probability of default we are interested in. Furthermore, there is no need to 

specify any assumption on recovery rates, as typical when obtaining probability of default 

from credit derivatives, such as CDS-spreads, Duffie and Singleton (2003).  

 

The probability of default is defined as the probability that the value of the underlying asset 

will go below a threshold level, the default barrier. While based on the balance sheet 

structure suggested by Merton (1974), option-iPoD significantly departs from existing 

methodologies, as it does not assume any ad-hoc default barrier. To the contrary, the default 

barrier is endogenously determined. 

   
The framework exploits the entire information set available from option prices, so as to 

capture the well documented volatility smile and skew, and results extremely informative 

about the expected value of balance sheet variables. Since the probability distribution is 

recovered, one can also obtain the implied expected value of equity and leverage. For risk-

management purposes, the implied asset volatility, and the Greeks (delta, gamma, and vega) 

are also determined. We discuss how to derive a term structure of probability of default, 

based on the maturity of option contracts, and how to extend the framework to incorporate 

information from the price of zero-coupon bonds to obtain a credit-default spread.  

 

The paper is organized as follows. Section II describes the problem. Section III proposes the 

solution method. Section IV discusses the limitations of using equity options in the current 

framework. Section V presents the empirical implementation. Section VI illustrates results 

from a sample of major U.S. banks. Section VII illustrates the developments of option-iPoD 

and Moody’s KMV Expected Default Frequency during the period leading to the collapse of 

Bear Stearns. Section VIII indicates some caveats, Section IX extends the framework and 

incorporates zero-coupon bonds into the analysis, and Section X concludes. 

 

II.   THE PROBLEM 

The problem is to determine a market-based measure of probability of default (PoD). If one 

indicates by V the value of an asset, PoD is generally defined as: 

 

( ) ∫=
X

vdvfXPoD
0
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Where vf  is the probability density function of the value of the asset, and X is the default 

threshold, i.e., the value that triggers the default. When the value of the asset goes below X , 

the company defaults. 

 

In order to estimate ( )XPoD , we will use equity options. A call-option is a contract that 

gives the holder the right to buy the underlying asset (equity), at a predetermined price, or the 

strike price. Therefore, at expiration, the payoff of a call-option written on a stock is given by  

 

( )0;max KEC T

K

T −=  

 

where K is the strike price and TE  is the price of the stock at expiration (T ).   

The option-iPoD is determined by assuming the balance sheet structure suggested by Merton 

(1974). To finance its assets V , the company has only two sources of financing: debt ( D ), 

and equity ( E ). Equity is a junior claim on the value of the assets, i.e., when the company 

defaults debt is repaid first and equity holders receive the remainder. As such, at each point 

in time, the payoff to an equity-holder is:  

 

( )0;max DVE −=  

 
As a result, an option written on a stock can be regarded as an option on an option, Hull et. al 
(2004). 
 

( ) ( )( ) ( )0;max0;0;maxmax0;max KDVKDVKEC TTT

K

T −−=−−=−=  

 

To obtain option-iPoD, we need to determine D , and the probability that TV  will end-up 

below D . 
 
Different approaches would be able to analyze this problem. For example, one could specify 

an ad-hoc probability density function for TV  - such as a normal density or a mixture of 

normals – or fit a polynomial function or splines to meet some pre-specified constraints. In 

this paper, we will solve for ( )DPoD  by focusing on the cross-entropy functional introduced 

by Kullback and Leibler (1951).  

 
The principle of maximum entropy and the related minimum cross-entropy make it possible 

to recover the probability distribution of a random variable. The recovered distribution is 

solely driven by what the researcher can observe. There is no additional assumption. In this 

sense, the maximum entropy distribution is the closest to the true distribution, as long as the 

true distribution is reflected into observable data, Jaynes (1957). When the researcher has 

additional information concerning the distribution she would like to recover, the principle 

can also incorporate this prior-information. In this case, the principle of maximum entropy is 

extended into the principle of minimum cross-entropy (or relative entropy), Cover and 

Thomas (2006). Buchen and Kelly (1996) show how to recover the probability distribution of 
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an underlying asset by applying maximum entropy and minimum cross-entropy when option-

prices are available. 

 

Here, we show how to extend this approach to obtain the probability of default implied by 

option-prices, the option-iPoD.  

 
Our problem is the following: 
 

( ) ( )
( ) 



















∫
∞

=

T

T

T

V

T
VfD

dV
Vf

Vf
Vf

T

T
0

0
)(

logminmin                               (1) 

 

Where ( )TVf 0  is the prior probability density function of the value of the asset, representing 

the researcher’s prior-knowledge on ( )TVf , the posterior density. ( ) ( )
( )







Vf

Vf
Vf

0
log  is the 

cross-entropy between ( )Vf  and ( )Vf 0  as defined by Kullback and Leibler (1951). The 

cross-entropy represents the degree of uncertainty around ( )Vf .2 The set-up is extremely 

flexible. For instance, ( )TVf 0  can be easily included in the problem, but is not required.  

The constraints that drive the probability density function are only observable information. In 

our problem, we will impose the balance sheet structure suggested by Merton, i.e. the value 

of equity corresponds to the value of a call option written on the value of assets:  

 

( ) ( )∫∫
∞

=

−
∞

=

− −=−=
DV

TTT

rT

V

TTT

rT

TT

dVVfDVedVVfDVeE )()(0;max
0

0   (2) 

 
Equation (2) says that the present value of the stock price at expiration of the option contract 

must correspond to the stock price observed today, 0E . In addition, we constraint ( )Vf  by 

asking the posterior density to be able to price observable option prices: 

 

( ) ( )∫∫
∞

+=

−
∞

=

− −−=−−=

iTT KDV

TTiT

rT

V

TTiT

rTi dVVfKDVedVVfKDVeC )()(0;max
0

0  (3) 

 

                                                 
2 The cross-entropy can be interpreted as a measure of relative distance between the prior and the posterior 
density function. Cover and Thomas (2006) discuss the statistical properties of entropy. We posit the problem in 
terms of minimum cross-entropy. There is no loss of generality, since the maximum entropy distribution 
corresponds to the minimum cross-entropy distribution when the prior is the uniform distribution, Buchen and 
Kelly (1996).  
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Equation (3) says that the present value of the call-option payoff at expiration must 

correspond to the observed call-option price today, i
C0 , where ni ....2,1=  indicates the 

number of available option contracts. Finally, we require an additivity constraint on the 

posterior density function: 

 

                                            ∫
∞

=

=
0

)(1

TV

TT dVVf                              (4) 

 
III.   SOLUTION 

The problem is solved sequentially. First, we solve the optimization problem for ( )TVf . 

( )TVf  will be in function of the free parameter D . Second, and given the optimal ( )TVf , we 

solve for D . The Lagrangian is: 
 

( )
( )
( )

( )

( )∑ ∫

∫∫∫

=

∞

+=

−

∞

=

−
∞

=

∞

=








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


−−−+
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
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


−−+


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


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


−+




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


=

n

i KDV

TTiT

rTi

i

DV

TTT

rT

V

TTT

T

T

V

T

iT

TTT

dVVfKDVeC

dVVfDVeEdVVfdV
Vf

Vf
VfL

1

0,2

01

0

00

0

)(

)()(1log

λ

λλ

 
 

the FOC for ( )TVf  requires the Fréchet derivative of L to be equal to zero: 

 

( )
0

0

=
∂

+∂

=εε

εgfL
 

 
for some other density function g , which immediately implies, Cover and Thomas (2006): 

 

( ) ( ) ( ) ( )







−−+−+−⋅= ∑

=

+>
−

>
−

n

i

iTKDV

rT

iTDV

rT

TT KDVeDVeVfVf
iTT

1

,210

0 1exp 11111111 λλλ  

 

where DVT >1111  corresponds to the indicator function that takes the value of one whenever 

DVT > , and zero otherwise, and 
iT KDV +>1111  is defined whenever iT KDV +> . This expression 

reduces to:  
 

( )
( )

( ) ( ) ( )







−−+−⋅= ∑

=

+>
−

>
−

n

i

iTKDV

rT

iTDV

rT

TT KDVeDVeVfVf
iTT

1

,21

0 exp
1

, 11111111 λλ
λµ

λ  (5) 
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with ( ) ( ) ( ) ( )∫ ∑
∞

= =

+>
−

>
−









−−+−⋅=

0 1

,21

0 exp

T

iTT

V

T

n

i

iTKDV

rT

iTDV

rT

T dVKDVeDVeVf 11111111 λλλµ , 

since  
 

[ ]
( )λµ

λ
1

1exp 0 =−  

 
in order for equation (4) to be satisfied. Equation (5) can be substituted back into the 

Lagrangian to find the FOC for the lambdas, requiring: 

 

( )( )
0

,,
=

∂

∂

λ

λλTVfL
    

  
These are given by the following system: 
 

( )
( )

0

1

1
E=

∂

∂

λ

λµ

λµ
      

 

( )
( ) i

i

C0

,2

1
=

∂

∂

λ

λµ

λµ
  for  ni ....2,1=    (6) 

 
The system of equations is nonlinear, and will be solved numerically.3 Once a solution to 

equation (6) is obtained, we can substitute it back into (5), to obtain:   

 

( )DVf T ,*       (7) 

 

( )DVf T ,*  depends on the free parameter D , the default barrier. To solve for D , one can 

substitute equation (7) into the original Lagrangian ( )( )DVfL T ,* . The optimal D  will be 

determined by: 
 

( )( ) ( )( )
0

,*,*
lim

0
=

∆+

−∆+
→∆ D

DVfLDVfL TT   (8) 

 
Empirically, equation (8) will also be solved numerically. 
 
The economic interpretation of the solution is as follows. First, we started by specifying an 

initial probability density function, the prior ( )TVf 0 , defined on the random variable of 

                                                 
3 We used a standard Newton method, as described, for example, in Djafari (2000). Buchen and Kelly (1996) 
and Avellaneda (1998) show that the objective function is convex, and that the solution is unique. 
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interest ( )TV . The FOC describes how to optimally modify the prior and construct a posterior 

density ( )TVf  that is able to satisfy the price constraints observed in the market. In equation 

(5), we can note that the Lagrange multipliers are the optimal weights given to each 

constraint when moving from ( )TVf 0  to ( )TVf . These multipliers have a direct economic 

interpretation: they represent the shadow cost of each constraint and indicate how difficult 

(costly) it is for the prior probability density function to meet these constraints. 

 
IV.   WHAT CAN EQUITY OPTIONS SAY ABOUT DEFAULT? 

The answer is: not everything that we would like, but enough to be able to confidently 

implement the solution proposed in Section III. 

 

Equity options are not well suited to describe the default state, the state in which the asset 

value (V) is lower than the default barrier (D). This is because the entire information set we 

are using comprises stock and option prices, which refer to the non-default state. Since 

( )0;max DVE −= , we do not have information on what happens when ( ) 0<− DV . In fact, 

there is no trading of stocks, no trading of options in that state! Formally, we can see this by 

looking at the FOC for ( )TVf . When ( ) 0<− DV , ( )TVf  is driven by the prior ( )TVf 0 , and 

the Lagrange multipliers associated with the market-price constraints in equation (2)-(3) do 

not help shaping ( )TVf . In fact, there is no market (no price) for equity and options. Put it 

differently, when ( ) 0≤− DV , 0=E  and 0=C , and from the perspective of an option (or 

equity) investor there is no difference whether DV =  or DV <  since her payoff does not 

change.4  

 

While equity options do not contain information on the shape of the probability density 

function in the default state, they do contain information on the cumulative distribution 

function, the probability of default. As the payoff to an option investor is unaffected when 

DV ≤ , the option prices will reflect cumulative information, without distinguishing between 

the probability of entering into the default state ( DV = ), from the probability of being in the 

default state ( DV < ). When DV = , the density obtained from option prices will therefore 

need to have sufficient “mass” to take into account values for which DV <  as well.  

In the default state, the constraints that contain information on the range of values TV can take 

are no more active. As a consequence, the FOC can only ask 0λ , the Lagrange multiplier 

associated with the additivity constraint in equation (4), to provide the cumulative and 

residual information on ( )TVf .  

 

                                                 
4 A similar argument would show that the payoff to a put investor would be KP = (or KP −=  for a short 

position) when DV ≤ . 
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V.   EMPIRICAL IMPLEMENTATION 

We need at least two option contracts to solve the problem. Intuitively, one contract is used 

to shape the density ( )DVf T ,* , while the other contract is needed to pin down D . More 

contracts are clearly useful to obtain a better representation of the data, but two options are 

sufficient to implement, in practice, this framework. 

 

Suppose that two option contracts are available. The contracts are written on the same stock, 

and expire the same date. The empirical strategy consists of using one option contract, 

( )11, KC , to solve the first optimization problem in (1), and obtain ( )DVf T ,*  in (7). A 

second step, outside of the first optimization problem, uses the second option contract, 

( )22 , KC , to search for the D  that: (i) is consistent with (7)-(8); and (ii) satisfy the price 

constraint on the second option contract, i.e., is able to price the second option contract. 

 

To implement the numerical procedure, we first need to discretize the domain of V. The 

following step procedure is implemented taking into account the observations in Section IV: 

 

(i) we calibrate the maximum value that V can take, Vmax. Vmax is based on the book value 

of assets, the average growth rate of the last four quarters of the book value of assets and its 

standard deviation;   

 

(ii) starting from a suitable initial guess of D , call it 0D , we divide the domain of V in two 

sub-intervals, ];0[ 0

0
DDS =  describing the default state, and max];[ 0

0
VDNDS ε+=  

indicating the non-default state. 

 

(iii) when 0DSVT ∈ , we discretize the domain by allowing TV  to take only two values: 0 or 

0D , and we start by setting ( ) 000 ==TVf  and ( ) 00

0 == DVf T , requiring ( ) 00 =DPoD . 

 

(iv) when 0NDSVT ∈ , we discretize the domain by constructing 100 equally spaced values 

TV  can take. We assign the same likelihood to each of these values (the prior is a uniform 

distribution) so that under ( )TVf 0 , ( ) ( ) 11Pr 0

0 =−=∈ DPoDNDSVT .  

 

(v) we solve numerically for a new D , 'D and ( )', DVf T  for which ( ) 00 ==TVf , 

( ) ( )'' DVfDPoD T ==  and ( ) ( ) ( )'1'1'Pr DVfDPoDNDSV TT =−=−=∈ . 

 

(vi) once a solution is obtained, we repeat steps (iii)-(v). However, we now fix the range of 

values V can take between ]';0[' DDS =  and max];'[' VDNDS ε+= , and we determine new 

values for ( )'', DVf T  and ''D ; 
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(vii) the procedure stops when *''' DDD == , so that ( ) ( ) ( )*,*'',*',* DVfDVfDVf TTT == , 

and ( ) ( ) ( )**1*1*Pr DVfDPoDNDSV TT =−=−=∈ . 

 

(viii)  option-iPoD corresponds to ( )*DPoD .  

 
VI.   RESULTS 

We apply the above framework to the ten largest U.S. banking groups. We include five bank 
holding companies: Bank of America, Citigroup, JPMorgan, Wachovia, Wells Fargo, and 
five investment banks: Bear Stearns, Goldman Sachs, Lehman Brothers, Merrill Lynch, and 
Morgan Stanley.  
 
As the financial crisis erupted in the summer of 2007, it seems interesting to see how the 
framework is able to capture the developments in market sentiment. Option contracts have 
different expirations: January, March, April, May, June, July, August, and September 
comprise the entire set of expirations for the chosen sample. However, banks do not have 
option contracts expiring at all available dates. Typically, a standard option cycle is followed 
over the calendar year. For example, Citigroup’s cycle comprises January, March, June and 
September expirations. During the year, further expirations generally become available. 
Option contracts expiring in the month of January of the following two years are also 
available. As an example, table 1 summarizes all option contracts on February 12, 2008. 
 

 
 
For each contract, there is a range of available strike prices. This range is not constant 
throughout the life of the contract, i.e., generally more strikes become available as the 
expiration approaches. Furthermore, volumes differ substantially within the same contract; 
higher volumes tend to be registered close to the value of the underlying asset (at-the-money 
using Wall Street jargon) than further away from that value (out-of-the-money or in-the-
money depending whether one is interested in a call or a put contract). The strike prices 
apply to both call and put options expiring on the same day. 
 
Table 2 presents all strikes available for the put/call contracts on Citigroup expiring on June 
21, 2008, as of February 12, 2008. The trading volumes on February 12, 2008 are also 
reported. 
 

Bank of America Citigroup JP Morgan Wachovia Wells Fargo Bear Stearns Goldman Sachs Lehman Brothers Merrill Lynch Morgan Stanley

3/22/2008 3/22/2008 3/22/2008 3/22/2008 3/22/2008 3/22/2008 4/19/2008 4/19/2008 4/19/2008 4/19/2008

4/19/2008 6/21/2008 6/21/2008 4/19/2008 4/19/2008 4/19/2008 7/19/2008 7/19/2008 7/19/2008 7/19/2008

5/17/2008 9/20/2008 9/20/2008 7/19/2008 7/19/2008 7/19/2008 1/17/2009 1/17/2009 1/17/2009 1/17/2009

8/16/2008 1/17/2009 1/17/2009 1/17/2009 1/17/2009 1/17/2009 1/16/2010 1/16/2010 1/16/2010 1/16/2010

1/17/2009 1/16/2010 1/16/2010 1/16/2010 1/16/2010 1/16/2010

1/16/2010

Source: Bloomberg

Table 1. Option contracts cycles. Available expiration dates on February 12, 2008
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To estimate option-iPoD for Citigroup on February 12, 2008, we use the entire information 
set of table 2. As such, the framework naturally handles the well documented deviations from 
the lognormal distribution, observed as volatility smile and skew. These are optimally 
captured by the Lagrange multipliers associated to each constraint imposed during 
optimization, equation (5). Since call and put options are related by the put-call parity, we 
can restrict our attention to call contracts.5  
 
Within these contracts, it seems reasonable to assign different weights to different contracts. 
Otherwise, each contract would have the same relevance during optimization.6 We weight the 
contracts by their volume, so that the call option with K = 27.5 will have the largest weight, 
and K = 45 will have the smallest, Table 2. Furthermore, we assume a uniform distribution as 

a prior distribution for ( )TVf 0 .7  

 

Figure 1 presents option-iPoD for Citigroup, and the entire estimated probability density 

function ( )TVf . As discussed in Section IV, the framework is not able to describe the 

probability density function in the default state, but is informative on the cumulative 

distribution function, the probability of default.  

                                                 
5 Results are not significantly affected when put contracts are used. 

6 These weights are clearly different from the Lagrange multipliers, which are the optimal weights that are 
chosen endogenously during optimization. 

7 This is a conservative assumption. We have experimented with several alternatives, including calibrating a 
lognormal distribution based on quarterly balance sheet information. Results are not significantly affected.  

Today's Date Expiration Date Stock Price Today Strike Price Call Put Call Put

2/12/2008 6/21/2008 26.21 15.0 0 26 0.00000 0.00118

2/12/2008 6/21/2008 26.21 17.5 0 120 0.00000 0.00544

2/12/2008 6/21/2008 26.21 20.0 184 6153 0.00891 0.27883

2/12/2008 6/21/2008 26.21 22.5 35 7254 0.00169 0.32873

2/12/2008 6/21/2008 26.21 25.0 197 7316 0.00953 0.33154

2/12/2008 6/21/2008 26.21 27.5 7196 275 0.34827 0.01246

2/12/2008 6/21/2008 26.21 30.0 5288 675 0.25593 0.03059

2/12/2008 6/21/2008 26.21 32.5 644 175 0.03117 0.00793

2/12/2008 6/21/2008 26.21 35.0 6437 60 0.31154 0.00272

2/12/2008 6/21/2008 26.21 37.5 621 10 0.03006 0.00045

2/12/2008 6/21/2008 26.21 40.0 20 3 0.00097 0.00014

2/12/2008 6/21/2008 26.21 42.5 25 0 0.00121 0.00000

2/12/2008 6/21/2008 26.21 45.0 15 0 0.00073 0.00000

2/12/2008 6/21/2008 26.21 47.5 0 0 0.00000 0.00000

2/12/2008 6/21/2008 26.21 50.0 0 0 0.00000 0.00000

2/12/2008 6/21/2008 26.21 55.0 0 0 0.00000 0.00000

Source: Bloomberg and author's calculations

1/ one contract corresponds to 100 stocks

2/ call (or put) contract volume divided by total call (or put) volume

Table 2. Citigroup. Strikes, Volume and Weights

Volume 1/ Weights 2/
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Table 3 presents other relevant output. Since the probability density function is recovered, 

the model delivers useful output for risk-management purposes. In particular, the implied 

asset volatility and the Greek letters – delta, gamma, and vega – describing the different 

dimension of risk-exposure in an option position are obtained. 

 
 

Figure 1. Citigroup, February 12, 2008: option -iPoD and the Probability Density Function  1/
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1/ the expiration of the option contracts is June 21, 2008. The value of assets VT is $ per share outstanding.
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Each day, markets trade more than one expiration date on the same stock. As such, the 

framework is able to deliver an entire term structure of option-iPoDs, Figure 2. 

Input

Today's date 2/12/2008

Expiration date of the contracts 6/21/2008

Stock Price today 26.21

Output

Balance Sheet developments

Expected value of the Stock Price at expiration 26.41

Default Barrier 430.50

Option- iPOD 0.0007420400

Expected value of the Assets at expiration 1/ 456.91

Max Value of Assets at expiration 1/ 476.37

Book Value of Assets totay 2/ 437.01

Expected Value of Leverage at expiration 17.30

Book Value of Leverage 3/ 19.21

Market Value of Leverage 4/ 16.20

Risk-Management output

Implied Asset Volatility 5/ 22.27

Skewness -1.83

Kurtosis 27.53

Delta 6/ 0.15

Gamma 6/ 0.02

Vega 6/ 0.12

Source: author's calculations

1/ per share outstanding

2/ Book value of Assets divided by number of shares outstanding

3/ Book value of Assets divided by book value of equity

4/ Book value of Assets divided by market value of equity

5/ annualized

6/ for an underlying stock price (or strike price) of 27.5

Table 3. Citigroup: Summary of Results
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The model provides the market-expected values of several balance sheet variables. It is 

interesting to note that leverage, defined as the ratio of book value of assets to book value of 

equity, has recently attracted considerable attention, since its procyclicality has been 

indicated as one possible source of concern for financial stability, Shin (2008). 

Interestingly, our framework indicates that the market expects some de-leveraging for 

Citigroup in the next months, Figure 3.8  

 
 

                                                 
8 Appendix I presents results for the other banks in Table 1. 

Figure 2. Citigroup: Term-structure of option -iPoD on Feb 12, 2008
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We can say even more. We can compute the likelihood that a certain balance sheet ratio will 

end up above (or below) a pre-specified threshold. Table 4 computes the probability that the 

leverage ratio will be below some illustrative values. Due to the risk-neutrality of the 

framework, caution should be used when interpreting Tables 3–4. Nevertheless, this type of 

output might be particularly appealing for bank regulators. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Citigroup: Expected Balance Sheet Developments on Feb 12, 2008
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Leverage 1/ Equity 2/ Probability

< 20 > 5 0.73

< 25 > 4 0.87

< 30 > 3.3 0.92

Source: author's calculations

1/ ratio of Assets to Equity

2/ ratio of Equity to Assets, in percent

Table 4. Citigroup: Leverage-at-Risk

 



 16 

VII.   LISTEN TO OPTION -IPOD. THE COLLAPSE OF BEAR STEARNS 

Bear Stearns collapsed on March 14, 2008. During the following weekend, a rescue plan was 

put in place by the Federal Reserve Bank (FED). The plan involved the acquisition of Bear 

Stearns by JP Morgan Chase. It seems interesting to see how and if option-iPoD was able to 

capture market sentiment around this event. In addition, we present the developments of 

Moody’s KMV Expected Default Frequency (EDFTM) during the same time period. 

 

We have to say upfront that option-iPoD is not directly comparable with EDFTM. EDFTM 

represents the real-world probability of default in one year time, as estimated by Moody’s. 

On the other hand, option-iPoD represents the risk-neutral probability of default at the 

expiration of the chosen contract. As such, in the absence of a correction for risk-aversion 

and a time-transformation, the level of option-iPoD cannot be directly compared with the 

level of EDFTM. However, both indicators are forward-looking and market-based. Therefore, 

the percentage change in the indicator should provide a measure of the change in market 

perception of the probability of default. 

 
Figure 4 presents Moody’s KMV EDFTM for Bear Stearns, during February 12–March 19, 
2008. 
 

 
 

Figure 4. Moody's KMV Expected Default Frequency in one year

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

2
/1

2
/2

0
0
8

2
/1

3
/2

0
0
8

2
/1

4
/2

0
0
8

2
/1

5
/2

0
0
8

2
/1

9
/2

0
0
8

2
/2

0
/2

0
0
8

2
/2

1
/2

0
0
8

2
/2

2
/2

0
0
8

2
/2

5
/2

0
0
8

2
/2

6
/2

0
0
8

2
/2

7
/2

0
0
8

2
/2

8
/2

0
0
8

2
/2

9
/2

0
0
8

3
/3

/2
0
0
8

3
/4

/2
0
0
8

3
/5

/2
0
0
8

3
/7

/2
0
0
8

3
/1

0
/2

0
0
8

3
/1

1
/2

0
0
8

3
/1

2
/2

0
0
8

3
/1

3
/2

0
0
8

3
/1

4
/2

0
0
8

3
/1

7
/2

0
0
8

3
/1

8
/2

0
0
8

3
/1

9
/2

0
0
8

Bear Stearns. EDF, bps

Source: Moody's Creditedge
 



 17 

EDFTM remained almost constant until March 13, and presented a small increase on March 

14. Bear Stearns collapsed on March 14. EDFTM reached its peak on March 17, when the 

FED rescue plan had already been announced and remained more or less at that level on 

March 18–19. 

 

We focus on the put/call option contract on Bear Stearns expiring on March 22, 2008, the 

closest to the March 14 collapse, and we compute option-iPoD during February 12–March 

19, 2008. Figure 5 illustrates the developments of option-iPoD and the five-years senior CDS 

spread on Bear Stearns. 

 
 
Option-iPoD started to indicate some market nervousness on February 21. On February 29, 

option-iPoD jumped by a factor of 766 with respect to the previous day. The following week 

a relative calm seemed to return, but on March 10 option-iPoD jumped again, a jump 4 times 

bigger than the previous one, i.e., option-iPoD was signaling Bear Stearns was under 

considerable stress. option-iPoD reached its peak on March 14, but quickly dropped on 

March 17, following the rescue plan announced by the FED. In addition, during this episode, 

changes in option-iPoD appear to be a leading indicator for changes in the level of CDS-

spread.  

We do not attempt to explain the differences between option-iPoD and EDFTM. Contrary to 

existing methodologies, a key feature of option-iPoD is that our default barrier is 

Figure 5. Listen to option- iPoD. The collapse of Bear Stearns
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endogenously determined and time-varying, thus contributing to incorporate market 

sentiment more efficiently. This feature appears particularly relevant when analyzing the 

default probability of corporations, such as banks, which perform extensive off-balance sheet 

activities.9 

 

It is particularly interesting to look at the probability density function estimated on March 14, 

Figure 6. The bell shape is reversed, the distribution is bi-modal, indicating considerable 

market uncertainty about the future of Bear Stearns. 

 
 

VIII.   CAVEATS 

The framework we are proposing is not definitive. In particular, we have not shown that the 

endogenous default barrier is uniquely defined. Empirically, this has not been a problem, 

since we have always found a unique solution. Nevertheless, we acknowledge this issue to 

require further analysis. 

 

                                                 
9 Moody’s KMV’s methodology adopts a default barrier based on on-balance sheet liabilities, and generally 
corresponding to short-term liabilities plus half long-term liabilities, Creditedge User Guide (2007), Dwyer, 
Guo and Hood (2006), Crosbie and Bohn (2003). 

Figure 6. Bear Stearns, March 14, 2008: option -iPoD and the Probability Density Function  1/
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As the discussion in Section IV highlights, it appears difficult to derive a credit-default swap 

spread from this framework. In order to model the default state, and the price to pay to insure  

against default, the framework could be usefully extended by using information from the 

price of bonds. Since bonds are senior claims with respect to equity (stock), prices of bonds 

provide information on the default state, and on CDS-spreads. 

 

IX.   ZERO-COUPON OPTION-IPOD 

We can extend the framework, as indicated in Section VIII, by incorporating information 

from the price of bonds. We will argue that while theoretically appealing, the extension may 

not be the best empirical solution to estimate the probability of default.10 

 

Each day, markets trade a certain number of bonds on the same company. In fact, bonds 

differ by type (zero-coupon, coupon, and convertible bonds are the most common) and 

maturity. Different bonds represent different senior claims on the value of the assets. As 

such, it is empirically cumbersome to obtain a seniority tree describing the entire structure of 

claims traded in the markets. 

 

For the sake of exposition, let us suppose that the company of interest finances its assets ( )V  

with equity ( )E , and a zero-coupon bond, whose face-value is ( )D , and whose maturity is 

assumed to be T, the maturity of the option contracts. A zero-coupon bond is a bond that 

costs 0PB  today and repays $1 of face-value at time T, but does not pay any coupon before 

maturity. Since 10 <PB , 0PB  provides information on the probability of default, i.e., the 

probability that the company will default and the bond holder will not receive $1 at time T. 

 

It is relatively straightforward to incorporate this extra-structure into the framework.  

We simply need to ask our new posterior density ( )T

ZC Vf , where ZC stands for zero-coupon, 

to be able to price the zero-coupon bond, on top of the earlier option price constraints. Since 

the bond is paid also when DV ≤ , this extra constraint will drive the shape of ( )T

ZC Vf  in 

the default state. 

 

 

The new problem is: 
 

( )
( )
( ) 



















∫
∞

=

T

T

T

ZC

V

T

ZC

VfD
dV

Vf

Vf
Vf

T
T

ZC 0

0
)(

logminmin     (1)’ 

                                                 
10 Chan-Lau (2006) reviews a number of techniques to determine a market-based probability of default. Zou 
(2003) develops a similar framework to analyze default probability. 
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subject to the following constraints: 

( ) ( )∫
∞
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− −=
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T

dVVfDVeE0      (2)’ 
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=

=
0

1

TV

TT

ZC dVVf        (5)’ 

 

ni ,....1=  indicates the available option contracts. (4)’ says that today, the price of a zero-

coupon bond must correspond to the present value of its expected payoff. Similarly to 
Section III., the solution to (1)’ is: 
 

( ) ( ) γλ ⋅= TT

ZC VfVf 0,     (6)’ 

 
where  
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and ni ....,2,1= .  

 
The zero-coupon option-iPoD is:  
 

∫
=

D

V

TT

ZC

T

dVVf
0

)(  

 
In the CDS market, a recovery rate of 40 percent is typically assumed in order to back-up the 

probability of default, Duffie and Singleton (2003). 11 Interestingly, our framework delivers 

an endogenous expected recovery rate: 

 

∫
=









D

V

TT

ZCT

T

dVVf
D

V

0

)(  

 
Since the yield to maturity is given by: 

                                                 
11 Altman (2006) reviews the recent literature on recovery rate estimation and its relationship with default. 
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yT

ePB
−=0  

(4)’ implies that the credit-default spread is: 
 

( ) ( )













+








−=−= ∫∫

∞

== DV

TT

ZC

D

V

TT

ZCT

TT

dVVfdVVf
D

V

T
rys

0

ln
1

  (6)’ 

 
From the empirical point of view, zero-coupon option-iPoD turned out to be impracticable. 

When brought to the data, the numerical algorithm described in Section V has rarely  

converged. In particular, constraint (5)’ is seldomly satisfied, so that the resulting zero-

coupon option-iPoD remains vague. This result makes a lot of sense. We have been really 

stretching the Merton (1974) framework, and it is not surprising to us that most of the times 

data reject this extension.12 

 

As mentioned, markets trade several types of bonds on the same company with a different 

seniority structure. Furthermore, the maturity of the zero-coupon bond would very rarely 

correspond to the maturity of the option contracts. In our opinion, these empirical limitations 

appear difficult to solve, and lead to the advice to listen, in practice, to option-iPoD of 

Section V.13 

 
X.   CONCLUSIONS 

We have presented a framework that uses the principle of minimum cross-entropy to derive 

the probability of default implied by the prices of equity options. The framework is flexible, 

does not require any strong statistical assumption, and provides results that are extremely 

informative on the expected developments of balance sheet variables, such as the value of 

assets, equity and leverage. In addition, the framework delivers useful output variables for 

risk-management purposes. In the episode of the collapse of Bear Stearns, option-iPoD was 

able to early signal market sentiment. These results should not be considered as an attempt to 

assess the stability of the U.S. banking sector at this difficult juncture, see Capuano and 

Segoviano (2008) for an in-depth stability analysis of the U.S. banking sector. 

                                                 
12 We have been somewhat more successful by letting the posterior density price directly the CDS-spread that 
comes from the market, Appendix II presents results for Citigroup. This means to replace (4)’ with (6)’ in the 
optimization algorithm, where s is the CDS-spread quoted by the market. Results for other U.S. banks are 
available, upon request. 

13 An alternative way to obtain zero-coupon option-iPoD would be to assume a recovery rate, say 40 percent, to 

back-up from (4)’ both D and ( )T

ZC Vf . Empirically, this strategy would suffer from the limitations discussed 

above, since the seniority structure of different bonds would remain unknown. Furthermore, there is debate on 
the empirical validity of a fixed recovery rate assumption in the pricing of credit derivatives, see Andritzky and 
Singh (2006) for sovereign defaults and Altman (2006) for corporate defaults.  
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We have shown how to extend the framework by using information from the price of a zero-

coupon bond. However, we have encountered serious data limitations that suggest not to use, 

in practice, the extension that accounts for a zero-coupon bond. Following Miller and Liu 

(2002), we intend to extend option-iPoD in a multivariate framework.  
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Appendix I. Results From The Ten Largest U.S. Financial Institutions 

Source: Author's calculations.
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Figure 1.A. Bank Holding Companies: option -iPoDs and Balance Sheet Developments on February 12, 2008
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Source: Author's calculations

Wachovia: Term-structure of option-iPoD
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Figure 2.A. Bank Holding Companies: option -iPoDs and Balance Sheet Developments on February 12, 2008
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Source: Author's calculations
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Figure 3.A. Investment Banks: option -iPoDs and Balance Sheet Developments on February 12, 2008
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Source: Author's calculations
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Figure 4.A. Investment Banks: option -iPoDs and Balance Sheet Developments on February 12, 2008
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Appendix II. Extension with Zero-Coupon Bond 

 
 
 
 
 
 
 

Figure 1.B. Citigroup. Zero-coupon option -iPoD on February 12, 2008 1/
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