
WP/08/24 
 

 
 

Do Technology Shocks Lead to 
Productivity Slowdowns? Evidence from 

Patent Data 
 

Lone E. Christiansen 
 



 

 

 



  
 

© 2008 International Monetary Fund WP/08/24 
 
 IMF Working Paper 
  
 Research Department 
 

Do Technology Shocks Lead to Productivity Slowdowns? 
 Evidence from Patent Data  

 
Prepared by Lone E. Christiansen1  

 
Authorized for distribution by Alessandro Prati  

 
January 2008  

 
Abstract 

 
This Working Paper should not be reported as representing the views of the IMF. 
The views expressed in this Working Paper are those of the author(s) and do not necessarily represent 
those of the IMF or IMF policy. Working Papers describe research in progress by the author(s) and are 
published to elicit comments and to further debate. 

 
This paper provides empirical evidence on the response of labor productivity to the arrival of 
new inventions. The benchmark measure of technological progress is given by data on patent 
applications in the U.S. over the period 1889–2002. The analysis shows that labor 
productivity may temporarily fall below trend after technological progress. However, the 
effects on productivity differ between the pre- and post-World War II periods. The pre-war 
period shows evidence of a productivity slowdown as a result of the arrival of new 
technology, whereas the post-World War II period does not. Positive effects of technology 
shocks tend to show up sooner in the productivity data in the later period. 
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I.   INTRODUCTION 

The traditional neoclassical real business cycle model assumes that technology arrives as an 
exogenous process, after which labor productivity immediately responds positively until the 
economy eventually converges to the new steady state where labor productivity is permanently 
higher. However, David (1990), Rogers (1995), and Hall (2004), among others, have provided 
evidence that technology diffuses slowly throughout the economy. This means that a new 
technology is adopted by agents over time and that all agents do not adopt the technology 
immediately. This process of adoption and diffusion of technology takes the form of an S-
shaped curve. That is, the technology initially diffuses slowly, followed by a period of rapid 
diffusion until the speed decreases when the technology has been absorbed in the economy. This 
view of slow diffusion therefore challenges the notion that technology shocks have immediate 
and positive effects on the economy. Furthermore, Robert Solow’s statement: “You can see the 
computer age everywhere but in the productivity statistics”2 clearly states how the literature 
lacks economic understanding of how productivity is affected by the arrival of new technology. 
 
This paper will show, through use of vector autoregressions and more than a century of U.S. 
data, that labor productivity may respond negatively in the short run to a technology shock. This 
case can arise if the arrival of a new technology initiates high installation costs or a learning 
stage for the productive labor. During this stage labor productivity does not necessarily increase 
as assumed by the standard neoclassical models. Rather, labor productivity can actually fall 
below trend temporarily. After a time lag from when the technology was invented, the 
technology eventually becomes adopted in the economy and the inflection point of the S-shaped 
diffusion curve is reached. Inputs can then once again be active in the production process and it 
is likely that labor productivity will increase above trend. 
 
The existing empirical literature which has focused on technological progress and subsequent 
productivity slowdown has mainly relied on simple graphical analysis. This paper therefore 
provides formal statistical evidence that the arrival of new technology can lead to a temporary 
slowdown in productivity using both an actual measure of technological progress and a long 
time-series as is important when studying productivity growth. Furthermore, the paper compares 
differences between the response of labor productivity to technological progress in the 
Electrification period and the more recent period, when the computer and the internet became 
widely adopted. The results from the post-World War II (post-WWII) period have important 
implications for understanding whether technological progress is the main reason for the 
productivity slowdown observed after 1973. 
 
The focus of this paper is the response of labor productivity and other macroeconomic variables 
following the initial arrival of new technology. In this paper, technology is measured as new 
inventions that have experienced a patent application. Because of long diffusion lags, the main 
focus of this paper is not on long-run impacts on productivity but instead on possible adverse 
                                                 
2 New York Times, July 12, 1987, page BR36. 



 5 
 
 
effects in the short run. Therefore, the paper does not argue that there are no positive effects on 
productivity from new inventions but instead argues that the positive effects may not arrive 
immediately after the invention of new technology. The contribution of this paper to the 
macroeconomic literature is therefore to supply empirical and statistical evidence for how 
aggregate variables historically have responded to technology shocks in the short run. 
 
As explained in the next section of the paper, much theoretical research has addressed the 
subject of possible contractionary effects of technology shocks. Further, empirical methods have 
been employed within the applied microeconomics literature, but this question has not been 
adequately addressed with long macroeconomic time-series data. The time-series literature 
therefore lacks direct empirical evidence on the effects of changes in technology. 
 
In this paper, new inventions are measured using historical data on patent applications, 
extending back to 1889. Using this data set, the paper finds evidence that productivity can 
temporarily decrease below trend after new inventions arrive. While some macroeconomists 
argue against the use of patents as a measure of technological progress, it will be argued that 
problems with patent data are not severe and that the field of macroeconomics can benefit from 
using patent data, as has long been the case in the microeconomic literature. Indeed, the analysis 
shows that up to 90% of the long-run variation in productivity in the post-WWII period is 
explained by the patent data. 
 
The paper is organized as follows. In section II, the existing literature relevant for this analysis 
is briefly reviewed. Section III presents the data and argues for the validity of patent data as a 
measure of technological progress, while section IV describes the methodology applied. Section 
V presents the empirical results in the benchmark scenario and in alternative representations of 
the data. Section VI analyzes the data when splitting the sample around WWII, and section VII 
discusses the implications for theoretical macroeconomics that the empirical findings imply. 
Finally, section VIII concludes. 
 

II.   EXISTING LITERATURE 

A substantial literature has focused on developing theoretical models that explain how 
productivity can be temporarily low after a technology shock. Among these are the models 
developed by Hornstein and Krusell (1996) and Greenwood and Yorukoglu (1997). Hornstein 
and Krusell (1996) examine the growth rate of total factor productivity and of labor productivity 
and show in a model with learning and a compatibility problem that a temporary slowdown in 
productivity growth can result after technological progress. These results arise in a case where 
labor is reallocated toward more recent vintages due to a higher rate of technological progress. 
 
Greenwood and Yorukoglu (1997) base their theoretical analysis on the observed decrease in 
the price of equipment around 1974, indicating technological change, together with an observed 
increase in wage inequality around the same period. These observations temporally coincide  
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with the measured slowdown in labor productivity growth. Following these observations, 
Greenwood and Yorukoglu (1997) develop a model where the firm produces at a variety of 
plants using capital together with both skilled and unskilled labor as inputs. The model shows 
that an increase in the growth rate of investment-specific technological change leads to higher 
income inequality during a learning period since skilled labor is relatively higher priced during 
this period. Furthermore, labor productivity growth slows down since application of the new 
technology takes time and because the new technology does not work at full capacity 
immediately after adoption as a result of the importance of learning. 
 
In empirical studies of productivity growth, Gali (1999) and Francis and Ramey (2004) identify 
technology shocks through a structural vector autoregression (VAR) using long-run restrictions. 
Gali (1999) assumes that labor productivity is characterized by a unit root which is driven solely 
by technology shocks. That is, technology shocks have a permanent effect on productivity and 
any permanent effects originate solely from these shocks. However, if variables other than 
technology affect long-run productivity, then the assumption used to identify the technology 
shocks is violated. Short-run effects based on long-run restrictions might therefore be 
unreliable. Thus, avoiding this restriction seems important when analyzing temporary short-run 
effects as done in this paper. Further, if productivity is trend stationary with deterministic 
breaks, then the long-run restrictions are invalid and can result in misleading conclusions. 
 
To avoid using identifying long-run restrictions an alternative is to compute technology series 
based on total factor productivity. Basu, Fernald, and Kimball (2006) construct a measure 
intended to capture aggregate technology. Their technology series is based on aggregate total 
factor productivity, controlled for varying utilization of capital and labor, non-constant returns 
and imperfect competition, and aggregation effects. However, total factor productivity remains 
a residual that likely includes other factors than technology. An alternative approach is therefore 
to use a direct measure of technological change which is empirically observed. One of the 
pioneers in using patent statistics as indicators of inventive output was Jacob Schmookler. He 
examined relations between inventive and economic activity and explored the relation between 
successful innovations and capital investment. The study in Schmookler (1972) contains an 
extensive list of patent statistics. 
 
Several studies in the patent literature have concluded that patent counts do have important 
information relevant for measuring technological progress and knowledge (Lach, 1995), among 
others). Furthermore, Hall and Trajtenberg (2004) find that highly cited patents are important 
when identifying periods with diffusion and development of a general purpose technology 
(GPT)3. This is done by exploiting information on the number of patent citations received and in 
generality measures based on the NBER patent citations data file which is described in Hall, 
Jaffe, and Trajtenberg (2001). 

                                                 
3 A General Purpose Technology (GPT) is described in Hall and Trajtenberg (2004) as a new technology that is 
extremely pervasive and used in many sectors of the economy and is subject to continuous technical advance after 
it has first been introduced. 
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A big increase in the flow of patents indicates a takeoff of a new technology. This takeoff is 
then followed by a period of diffusion and adoption of the technology, in which productivity 
may slow down. Sullivan (1990) examines the widespread patenting and invention during the 
English industrial revolution. Further, Griliches (1990) has a survey on patents as economic 
indicators. Jovanovic and Rousseau (2005) provide a careful descriptive analysis of similarities 
between the Electrification period in the beginning of the 20th century and the IT revolution in 
the end of the century. They note how patenting should be more intense after the arrival of a 
GPT. For an in-depth analysis of the Electrification period, see Du Boff (1979) and Devine 
(1983). 
 
In recent studies, a substantial amount of work has been done on patent data within the area of 
industrial organization. While the microeconomics literature has exploited this measure of 
technological progress, it has rarely been applied in the macroeconomic time-series literature in 
spite of the fact that patent data are a source for direct measures of technology improvements. 
One macroeconomic paper that does incorporate data on patent statistics is Shea (1998).  
He employs an annual panel data set containing total factor productivity (TFP), research and 
development (R&D), and patent applications, sorted by industry and covering the period  
1959–1991. He concludes that favorable R&D and patent shocks increase inputs in the short run 
but do not significantly increase measured TFP. However, grouping patent data at the industry 
level is associated with many potential problems since there is no clear data distinction between 
industry of manufacture and industry of use. Furthermore, many historically important 
inventions have arrived before 1959 and the recent surge in labor productivity in the late 1990s 
is not included in his sample. The long time-series dimension included in this present paper 
therefore contains valuable information that should be exploited. Further, since many aggregate 
variables exist over the time period after 1889, this paper can examine the effects on 
macroeconomic variables, other than TFP. The analysis in this paper therefore overcomes many 
of the problems faced by Shea. 
 
In a related paper, Alexopoulos (2006) uses an indicator of technological change based on book 
publications in the field of technology. Her annual sample period covers 1955–1997. This new 
data set is interesting in itself. However, many book titles may be published as the technology 
becomes adopted and the technology indicator may therefore partly reflect the diffusion of 
products and not strictly the arrival of a new technology. A study based on aggregate patent data 
using a long sample period therefore adds significantly to the existing literature. 
 

III.   DATA 

This paper follows the line of Shea (1998) by using patent data as a measure of technology since 
patents are a measure of inventive output in the economy. The paper uses patent applications 
instead of granted patents as the grant lag tends to vary considerably over time (Hall, Jaffe, and 
Trajtenberg (2001). Furthermore, the number of patents granted in a given year tends to be 
correlated with employment activity at the patent office. 
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Since the NBER patent citation database only contains citations made after 1975 this paper 
focuses on total annual utility patent applications received by the United States Patent and 
Trademark Office (USPTO) in the period 1889–2002. The paper focuses on utility patents since 
these are considered as invention patents by the USPTO.4 This also corresponds to Hall, Jaffe, 
and Trajtenberg (2001) who include utility patents in the patent citations data file. 
 
For purposes of identifying the economic response of productivity to technology improvements, 
using patent data offers an advantage over imposing long-run restrictions, because controversial 
assumptions about which shocks will affect productivity in the long run are not required. 
However, as mentioned by Shea (1998) there are drawbacks to using patent data. Namely, 
changes in patent laws can change the incentive to apply for patents, not all inventions are 
patented, and the importance of specific inventions varies over time. However, as mentioned in 
section II, patents do contain important information about technological progress. 
 
The number of patents granted is correlated with changes in patenting activity at the USPTO 
due to variation in budgetary resources over the administrative cycle, leading to budgetary 
effects in the granting activity. Furthermore, there may be changes at the patent office which 
lead to changes in the granting rates over time. On the contrary, this paper employs patent 
applications, which should be less affected by changes in the patenting activity at the USPTO 
than data on granted patents. As such, it is not necessary to control for variations in patenting 
activity due to changes at the patent office. However, using patent applications results in the 
problem that inventions which are not considered sufficiently unique and therefore are not 
patented are included in the data. For the present analysis, this is not a severe problem since 
arrival of a new GPT should lead to a surge of patent applications, as explained by Jovanovic 
and Rousseau (2005). To the extent that interest lies in exploiting the information about changes 
in economically important technological progress, patent application data do become a good 
indicator. 
 
Another potential problem with patent data is that patenting can be considered a strategic 
decision, and some firms may choose to keep their inventions secret rather than patent them. 
However, Trajtenberg (2001) notes that it is widely believed that these limitations are not too 
severe and argues that they do not affect trends or variation over time. Because this paper uses 
the time-series variation in the patent data, these limitations are not important. 
 
For the present analysis it is important to note that patents measure inventions and not 
innovations5. It is very likely that there is a lag between the arrival of a new invention and its 
                                                 
4 Other types of patents are plant patents and design patents. Plant patents can be granted to “anyone who has 
invented or discovered and asexually reproduced any distinct and new variety of plant, including cultivated sports, 
mutants, hybrids, and newly found seedlings” (USPTO). Design patents refer to a new design of a product. In most 
years, utility patents account for more than 93% of total patents and the results in the paper are not sensitive to 
using total patent applications. 

5 Innovation indicates first use of a given invention. 
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full use in the macroeconomy, as shown in figure 1. Furthermore, if the economy-wide adoption 
of new technology is sufficiently slow it is possible for the economy to slow down temporarily 
after the arrival of a new invention; positive effects may not arise until the technology has been 
sufficiently adopted. 
 
Another argument for using patent data as a measure of technological progress is the importance 
of news. Ramey (2006) shows how estimates of the effects of government spending shocks 
change dramatically if the initial anticipation of government spending is not taken into account. 
For the present paper, where technology shocks are the center of attention, this problem is 
particularly important, because technology affects the economy through slow diffusion. 
Considering shocks that have only immediate and positive effect on productivity may 
potentially exclude very important information about temporary adverse effects of technological 
progress. Using information from the patent data about the time of invention enables the 
analysis in this paper to capture the full effects of technology shocks. 
 
As the measure of productivity, the paper uses labor productivity, calculated as output per hour; 
the historical data come from Kendrick (1961). Details of the data, including other variables 
used and their sources, are described in the appendix. The natural logarithm is taken of all 
variables. The logarithm of the flow of total utility patent applications is illustrated in panel A of 
figure 2 and the logarithm of labor productivity and labor productivity growth are illustrated in 
panel B. 
 
The paper uses labor productivity instead of total factor productivity (TFP) in order to avoid 
some of the problems mentioned in Nordhaus (2005). Namely, the inputs of capital services are 
not observed directly and therefore must be estimated with specific assumptions when 
calculating TFP. See Nordhaus (2005) and references therein for a further discussion of this 
issue. As a robustness check, the calculations in this paper were also done with TFP in place of 
labor productivity. This did not change the conclusions and these results are therefore not 
reported. 
 
Figure 3 plots total patent applications together with total patents granted by year. The overall 
movements in these two series are similar, but the variation in the application-grant lag in some 
periods leads to a shift in the series on granted patents. For example, the surge of applications in 
the second half of the 1930s does not show up in the grant series until the first half of the 1940s. 
Similar shifts in the grant series can be seen in the second half of the 1940s and in the 1950s. 
Further, during the 1970s we observe a decrease in the number of patents granted while patent 
applications remained constant. In general, budget cuts at the USPTO lead to fluctuations in the 
grant series that are not present in the applications series. 
 
Based on the theoretical findings of Greenwood and Yorukoglu (1997), this paper also 
examines whether wage inequality changes as a result of technological progress. Data on 
income and wage inequality are taken from Piketty and Saez (2003). They collected annual data 
from the Internal Revenue Service back to 1913, which signified the beginning of the modern  
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U. S. income tax. Data on income and wage inequality cover the period 1917–1998 and  
1927–1998, respectively. The data include the income and wage shares of total income and 
wages for the top decile of tax units6. The income shares are calculated by dividing the income 
for a given fractile by total personal income from the National Income Accounts7. Wage shares 
are computed using an equivalent methodology, though linear interpolation is used where a few 
observations are missing. Piketty and Saez mention that the Tax Reform Act of 1986 and World 
War II are important for the development of the data series. During World War II, for example, 
there is a sharp drop in wage shares of the top decile, and this paper controls for this by 
including dummy variables whenever these variables are included in the estimation. 
 
Figure 2, panel B illustrates how labor productivity clearly has an upward trend. This may be 
due to an inherent unit root with drift or to a deterministic trend. Table 1 presents the results of 
Augmented Dickey Fuller unit root tests for labor productivity and patent applications under 
different assumptions for the alternative hypothesis. According to these tests, the paper cannot 
reject a unit root in productivity or patents in levels. Tests were also performed for unit roots in 
differences. These tests were all rejected and are not reported here. 
 
If both time-series are integrated of order one, I(1), it is important to test for cointegration in the 
data. However, cointegration tests for the full sample (not shown) reject the presence of 
cointegrating vectors when allowing for a linear trend in the data. It can therefore be concluded 
that a VAR(p-1) in log differences can be estimated. However, ignoring efficiency 
considerations, estimation can also be performed as a VAR(p) in levels and results of this 
estimation are described in section V. 
 
An important issue when testing for unit roots is that unit root tests are hard to reject if a 
coefficient is close to one. It is likely that the patent-productivity system is stationary around a 
trend. Perron (1989) considered the null hypothesis that a time series has a unit root with 
possibly nonzero drift against the alternative that the process is trend-stationary. In this 
specification he showed that one can reject the hypothesis of a unit root for most 
macroeconomic time-series when the alternative allows for an exogenous break in trend. 
Following Perron (1989), the exogenous break can in the pre-World War II (pre-WWII) period 
be estimated as a change in the intercept for the crash in 1929. For the oil price shock in 1973 
the break can be estimated as a change in the slope of the time trend. To allow for a Perron-type 
specification, this paper estimates a number of VARs with different assumptions, including time 
trends, breaks in trend, and dummy variables whenever necessary. Results of these estimations 
are reported in section V. 
 

                                                 
6 A tax unit is defined as “a married couple living together (with dependents), or a single adult (with dependents), 
as in the current tax law” (Piketty and Saez (2003)). 

7 Piketty and Saez (2003) note that this is the standard procedure when computing income inequality measures in 
historical studies. 
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True exogenous technology shocks should not be predictable by past observations of 
productivity. In order to test whether the measure of technology shocks used here satisfies this 
requirement, this paper presents Granger Causality tests with patents and productivity in table 2, 
panel A. The tests are done both in levels and in differences to avoid any inference problems 
caused by possible unit roots. It can be seen in the table that patents Granger Cause productivity 
and that the Granger causality does not run in the opposite direction. This, again, argues for the 
validity of patent data as a measure of exogenous technological progress. 
 
That patent application data despite their noisy component can be used as a measure of the 
arrival of major inventions can also be seen by examining a few historically known 
technological advances. Examples from the beginning of the sample period include the arrival 
of the first hydro-electric facility in 1894, the discovery of X-rays in 1895, the airplane in 1903 
and the radio in 1906, all of which are of great importance for development of future inventions. 
And all of these inventions were followed by an increase in patent applications. The second half 
of the 1930s also showed an increase in patent applications. This observation is consistent with 
Mensch (1975) who found that the years around 1935 were characterized by a large number of 
basic innovations which were important for further technological development. In more recent 
years, one of the most important new GPTs was the internet, which arrived in 1991 during a 
surge in patenting. 
 
An important issue concerning technological progress is the possible endogeneity of new 
inventions. As an example, R&D expenditures are important for development of new products. 
However, if the big changes in the flow of patents over the sample period are thought of as 
arrival of new GPTs, then these may tend to be less correlated with R&D expenditures. As a 
robustness check, section V also includes R&D expenditures in the analysis. 
On the contrary, if we consider adoption of new products in the economy, Comin and Hobijn 
(2004) showed that real GDP per capita is very important for the rate of adoption of a new 
technology as is the level of schooling. For many products a network effect is also in place.  
 
When examining the diffusion curves for different products we therefore observe the well 
known S-shape as described earlier. Figure 4 illustrates the S-shaped diffusion curve for 
aggregate electric power in American manufacturing. Figure 5 is a graph of how different 
inventions became adopted by American households. Note that there is a significant lag from 
the start of the diffusion process till it reaches its inflection point. Further, there is a lag between 
the initial date of invention, which for some products can be seen in table 3, and the start of the 
diffusion process. This lag tends to be shorter for more recent inventions just as the diffusion 
evolves at a faster rate. Alm and Cox (1996) address the fact that as the economy evolves, it 
takes less and less time for new products to become adopted. An example is the internet which 
was adopted at a rate that exceeded historically observed rates for other GPTs. This faster rate 
of diffusion in the later period indicates that any observed negative effects after new inventions 
may be shorter-lived in the second half of the sample than in the first half. 
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IV.   METHODOLOGY 

The benchmark model originates from a bivariate VAR with patents and labor productivity. 
Estimates are computed through a recursively identified structural VAR with patents as the first 
variable and productivity as the second. This corresponds to the assumption that patents are only 
affected by productivity with a lag, whereas productivity can respond to contemporaneous 
changes in patents. Using this ordering allows for productivity adjustments because of changes 
in expectations of future profitability after news of new inventions.8 The unrestricted reduced 
form VAR can be written as 

 ttptpttt xyyycy ε+Γ+Φ++Φ+Φ+= −−− ...2211 . ( 1 )

 
Here, yt is an n × 1 vector of the n endogenous variables in the VAR. As such, yt contains 
patents and productivity in the benchmark specification. When the paper allows for other 
variables to enter the system these variables will appear as the third variable in yt. xt is a vector 
of exogenous variables. εt is a vector of error terms, while c is a vector of constants. Φi, where  i 
= 1,…p, are matrices of coefficients on lagged observations of yt, and Γ is a matrix of 
coefficients for the exogenous variables. 
 
Let Ω denote the variance-covariance matrix of the error terms such that ( ) '' PPE tt ==Ω εε , 
where P is a lower triangular matrix computed by Cholesky factorization. Following Hamilton 
(1994), let F denote the matrix of coefficient estimates such that 
 

 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛ ΦΦΦΦ

=

−

nnnn

nnnn

nnnn

nnnn

pp

I

I
I

F

0...00
00...00
00...0
00...0

... 121

, ( 2 )

 
where In is an n × n identity matrix and 0n is an n × n matrix of zeros. The orthogonalized 
impulse response functions from a unit shock to yj s periods into the future can then be written 
as 
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11
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∂
∂ −−+ ,  for  s = 1, …, h, ( 3 ) 

where sF11   is the first n rows and n columns of Fs, Pj is the jth column of P, and Pjj is the (j,j) 
element of P. Thus, whenever the paper analyzes responses to a shock in a variable, the paper 

                                                 
8 The paper also tried different ordering of the variables. This did not change the overall conclusions. 
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considers a shock to the corresponding orthogonalized error term.9 With this specification, the 
imputed impulse response functions will depict the change in the forecast that occurred as a 
result of shocking one of the endogenous variables in the system. The impulse response 
functions will therefore illustrate changes in a variable, relative to the trend the given variable 
would otherwise have followed had the given variable not experienced a shock. As such, when 
the paper talks about negative or positive responses of variables to a technology shock, this 
should be interpreted as revisions in forecasts such that the given variable is forecasted to be 
below or above the initially forecasted level. That is, a negative response does not necessarily 
imply an actual fall in the level of the variable but indicates a slowdown relative to the initially 
forecasted path. 

V.   EMPIRICAL EVIDENCE 

A.   Benchmark Specification 

In section III, the paper found that unit roots cannot be rejected in the productivity and patent 
data. If it is assumed that these two variables have a unit root, this would argue for estimating 
the VAR in log differences in order to obtain stationarity. However, since both estimations in 
log differences and in log levels are consistent, both estimations are performed on the full 
sample.10 The two specifications show impulse response functions that are very similar, and the 
paper therefore only reports the results as estimated in log levels. As mentioned above, Perron 
(1989) found that many macroeconomic time-series are stationary around a trend if we allow for 
a break in trend. The bivariate VAR is therefore also estimated with time trends. Using this 
specification, the paper follows Perron (1989) and allows for a change in the intercept in 1930 
in the beginning of the great depression and for a break in trend in 1973, following the oil 
shock.11 
 
To determine the optimal lag-length in the VAR the Akaike Information Criterion (AIC) is 
estimated. The AIC suggests using p = 5 lags when estimating the VAR in levels. However, if 
the true lag-length is finite, the AIC estimate will not be consistent. See Bhansali (1997) for an 
analysis of this. To reduce the small sample bias, the paper therefore chooses p = 4 lags when 
estimating the VAR in levels12 and p = 3 lags when estimating the VAR in differences. 
On figure 2, panel A, patent data appear to have a break in trend in 1985. This could potentially 
be due partly to a change in the patent law in 1985 that may have affected the incentive to apply 
for a patent. The analysis can control for this by including a break in trend in 1985. The impulse 

                                                 
9 The impulse response functions are computed based on one standard deviation shocks, corresponding to not 
dividing by Pjj. 

10 Estimating in differences in the presence of unit roots is more efficient than estimating in levels. However, the 
levels estimation is consistent and often preferred to the difference estimation in order to avoid possible 
misspecification. 

11 See Ramey and Shapiro (1998) for another example of a Perron type time trend. 

12 The paper also tried using p = 5 lags. This did not change the overall conclusions. 
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response functions that result from a bivariate VAR with patents and productivity after a one 
standard deviation shock to patents are illustrated in figure 6 under different specifications. 
Panel A of figure 6 shows the responses using a VAR in levels without any time trends or 
dummies in the regressions. Panels B, C, and D of figure 6 include time trends with breaks in 
trend. The responses are plotted together with 2 standard deviation error bands. 
 
In figure 6, patents respond positively to a patent shock and in specifications where a time trend 
is included, the trend-stationarity leads to no permanent effects. Productivity temporarily 
decreases relative to the initially forecasted level after a positive patent shock under all 
specifications, and productivity slowly converges back to the initially forecasted level. This 
result supports the hypothesis of Hornstein and Krusell (1996) who examined if technology 
improvements can cause productivity slowdowns. If the response of productivity is examined in 
the Perron-type specification, including dummies for WWII and the Great Depression, at a 
horizon longer than 10 years, the response function (not shown) increases insignificantly above 
the originally forecasted level, indicating that productivity eventually will be positively affected 
by a technology shock. Furthermore, many researchers prefer to analyze detrended time series 
data so this paper also estimated the VAR with the full sample of HP-filtered13 data. The 
resulting impulse response functions are depicted in figure 6, panel E. Using HP-filtered data 
did not change the conclusions of a temporary productivity slowdown. However, the positive 
effects in this case show up sooner than in the case of a Perron-type specification. 
 

For the following analysis a benchmark model must be selected. The paper chooses to 
follow Perron (1989) and include a time trend, allowing for breaks. The benchmark 
specification can therefore be written as 
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where the notation is as in section IV. Additionally, timet is a time trend starting in 1889, and 
D29t is a dummy variable such that D29t = 1 for t > 1929 and 0 otherwise. GDt is a dummy 
variable that takes the value of 1 in 1931–33 in order to account for the Great Depression. 
WWIIt is a dummy variable such that WWIIt = 1 for t = 1941-45, and time73t is a time trend 
starting in 1973. A break in trend in 1985 is left out because it has little effect on the standard 
errors of the regressions and on R2.14 Furthermore, Kortum and Lerner (1998) examined the 
surge in patenting after 1985. They examined if this recent increase is a result of changes in 
patent laws in the U.S., a widening set of technological opportunities, or a change in the 
management of R&D facilities. They concluded that the recent surge in U.S. domestic patenting 

                                                 
13 HP filter denotes the Hodrick-Prescott filter. An HP parameter, λ, of 400 was used. 

14 Including a break in trend in 1985 does not change the overall conclusions. In most cases it only further 
decreases the response of productivity to a shock to patents. 
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is correlated with an increase in patenting abroad by U.S. inventors and is not specific to U.S. 
patent law changes. This suggests that a surge in discovery and innovation started around 1985 
and argues for not including a break in trend in 1985. Instead, the change is left as variation in 
the flow of patents, resulting from the arrival of new technology. 
Piketty and Saez (2003) mention that the Tax Reform Act of 1986 may temporarily have 
affected income inequality measures as 1987 and 1988 experienced a relatively large gain in 
inequality with no permanent level effects. The paper therefore includes a dummy for the two 
years following the Tax Reform Act when income inequality measures are included.  
To find support for the argument that technological progress can lead to productivity 
slowdowns, the response of other variables must be examined. A trivariate VAR is estimated 
with patents and productivity as the first two variables and a variable Dt as the third variable15. 
Dt will represent variables such as real consumption, gross private investment, output, and an 
index of stock market prices, among others. Only one of these variables enters at a time 
according to the measure of interest. 
 
The resulting impulse response functions of a shock to patents are shown in Figure 7. Each row 
in figure 7, panel A, indicates a different VAR with a different Dt. The response functions 
depicted in figure 7, panel B, are from different trivariate VARs. Labor productivity shows a 
transitory slowdown after a patent shock, although insignificant at the 5 percent level in the case 
of output and hours as the third variable. Note that when consumption and hours are included in 
the analysis, the response of productivity after 6 years is positive, although insignificant at the 5 
percent level. This indicates that the new technology does have a positive effect on labor 
productivity as is expected from theory. However, the time lag until the response is positive is 
longer than the standard theory would suggest. 
 
Consumption increases after a patent shock. This is consistent with the notion that consumers 
expect an increase in their future stream of income after the arrival of new technology. In order 
to smooth consumption, consumers increase consumption immediately. Panel A of figure 7 also 
reports the response of real GDP, which decreases temporarily. Correspondingly, the paper 
finds a large and significant short-run increase in consumption’s share of income after a patent 
shock. This reflects the importance of consumption smoothing after news arrives about new 
technology. Figure 7, panel A, also shows the response of output in the private economy. Here it 
can be observed that private output does not respond significantly. 
 
The response of investment is insignificant and a clear conclusion cannot be made in this case. 
There is some indication that investment may be increasing in the short run, which is likely if 
net exports are decreasing. However, if the technology is adopted slowly, it may be that 
investment only increases over time as productivity increases. This is further explored in section 
VI. If investment does indeed increase in the short run, then an alternative explanation for the 
positive responses of both consumption and investment could be if patent applications tend to 

                                                 
15 The paper has experimented with other orderings of the variables without altering the conclusions. 
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increase during economic expansions. A patent shock could thereby forecast an increase in 
consumption and investment. However, this does not fit the response of output, and Granger 
Causality tests in panel B of table 2 show no indication that consumption and investment 
Granger Cause the flow of patents. This interpretation therefore does not seem convincing.  
Another explanation could be that government spending is correlated with the rate of patenting. 
However, if government expenditures are included in the VAR, ordered first in the system, then 
government spending does not show a significant reaction to a patent shock (not shown). This 
explanation, therefore, does not seem to be driving the results.16 Hours worked show an 
insignificant response, although indicating that labor input may be reduced in the long run after 
the arrival of new technology 
 
When considering income inequality, existing literature (Krusell, Ohanian, Rios-Rull, and 
Violante (2000), among others) suggests that wage inequality increases after the arrival of new 
technology as a result of higher demand for skilled labor. Looking at the empirical evidence 
available from patent data, there is some indication that this phenomenon is present. The wage 
inequality measure is described by the wage share of the top decile of tax units. Piketty and 
Saez (2003) indicate that the top percentile of the income distribution is largely influenced by 
capital income. The impulse response function is therefore estimated based on data for the  
90-99th percentile17. The impulse response function shows that wage inequality increases 
temporarily after an increase in the flow of patents; however, this result is not statistically 
significant at a 5 percent level. Using instead a measure of the income share that covers the 
period 1917–1998, the response corresponds to the one obtained using wage shares. However, 
when using the income share as a measure of inequality, the temporary increase is significant. 
The paper therefore finds support for the notion that a learning period is prevalent when 
adopting a new invention. This result further distinguishes the paper from Shea (1998), who 
does not explore how income inequality is affected by a technology shock. 
 
When a measure of wage inequality is included in the VAR, the response of productivity is not 
statistically significant. This could be a result of the change in the sample period, as data on 
wage inequality are only available beginning in 1927. Differences between the first half and the 
second half of the sample will be examined in section VI. 
 
Using the full sample period, the analysis finds that consumption is affected immediately by the 
arrival of new technology. Similarly, stock prices are expected to respond. Figure 8 contains the 
responses associated with the stock price analysis. Since it is uncertain how quickly the market 
learns about the new technology, this paper experiments with two different measures of stock 
prices. The impulse responses are based on a trivariate VAR with patents, productivity, and one 

                                                 
16 For some orderings there is some indication that government expenditures may show a negative response to a 
patent shock. Further examination of the relation between government spending and development of new 
technology is a subject for future research. 

17 The paper also estimated the response function including the top percentile. This did not change the responses. 
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of the measures of stock prices. Panel A of figure 8 uses January values of an S&P Composite 
index (SP1) in order to annualize the data, while panel B is based on June values (SP6). The top 
rows of the two figures show the responses of productivity and stock prices to a patent shock, 
while the bottom rows show the responses of productivity and patents to a stock price shock. 
The importance of comparing responses from a patent and a stock price shock originates from 
Beaudry and Portier (2006). They suggest that stock price shocks can reveal news about new 
technology and identify a shock that affects stock prices contemporaneously, but leads to an 
increase in productivity only with a lag. Since stock prices are assumed to incorporate all 
available information, changes in stock prices may arise as a forward-looking response to future 
patent applications. 
 
Comparing the responses of productivity to a patent shock in panels A and B of figure 8 
indicates that the temporary productivity slowdown is not sensitive to including different 
measures of stock prices in the analysis. In addition, the responses of productivity to a patent 
and an SP1 shock show the same overall pattern, although the productivity slowdown following 
an SP1 shock is insignificant. This may indicate similarities in the underlying information 
inherent in the patent and early stock price data. The impact responses of SP1 and SP6 to a 
patent shock are positive but insignificant. On the contrary, patents show a positive and 
significant response three to four years after a stock price shock, and patents respond faster to an 
SP6 shock than to an SP1 shock. The fact that patents increase after a stock price shock may 
result from the forward-looking behavior of stock prices, indicating news about the future 
profitability of new technology. Alternatively, a stock price increase can free up resources for 
funding of R&D and thereby lead to a future response of patents. A closer examination of this is 
left for future research. 
 

B.   Robustness of the Results 

Many macroeconomists are reluctant to accept patent data as a measure of technological 
progress because of the noise inherent in the data. As a robustness check, this paper therefore 
reexamines the impulse responses using different measures of technological progress. 
 
The patent stock 
 
A measure of the stock of patent applications is created, following Lach (1995). This 
corresponds to computing the stock of knowledge in the economy instead of focusing solely on 
the addition of new technology. Let Pt indicate the flow of patent applications in period t which 
was used in the previous section. The stock of patents, KPt, is then estimated as 
 

 g
PKP t

t +
=
δ

                t = 1889, 

( ) ttt PKPKP +−= −11 δ   t = 1890, …, 2002. 

( 5 )
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δ indicates the rate of depreciation of patent capital and is set to 15%, a level that is common in  
the literature. g is the average growth rate of patent applications over the full sample. The patent 
stock is illustrated in figure 9 together with the flow of patents. When comparing the two series, 
it can be observed that the patent stock mainly differs from the data on the flow of patents by 
smoothing the series. 
 
The response of productivity after a shock to the stock of patents is shown in figure 1018. The 
impulse response function shows that the temporary negative effect on productivity remains. 
This result is also robust to changes in the depreciation rate, δ, which was varied in the interval 
δ ∈ [0 , 1]. 
 
Using the stock of patents as the measure of technology, the analysis finds that consumption 
responds positively, corresponding to the effect using data on the flow of patents. This response 
is therefore not shown. Since the results are unchanged when using the stock of patents, the 
paper chooses to return to the use of patent flows as the measure of technological change. 
 
Evidence from a Restricted Model 
 
The VAR above incorporates dynamics in the system by allowing lags of productivity to affect 
the flow of patents. However, from table 2 it can be concluded that productivity does not 
Granger cause patents. Allowing for these dynamics in the VAR may therefore result in an 
unnecessary degrees of freedom reduction and less precise parameter estimation. To take this 
issue into account, the paper follows the approach of Lach and Schankerman (1989), who use 
firm-level data to estimate the importance of shocks that affect R&D, investment, and the stock 
market rate of return. Following their procedure, this paper allows investment to help explain 
the variation in patents and productivity in the unrestricted system of equations. This section 
therefore allows for three different kinds of shocks to the system. 
 
Ignoring exogenous variables, the unrestricted system of equations looks as follows: 
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where pt is the flow of patents at time t. yt indicates productivity, and it is investment. Bij(L) for 
i, j=1, …, 3 are polynomials in the lag-operator, L. Finally, εt, ηt, and τt, are orthogonal 
disturbance terms, where it must be determined how the shocks affect each equation. C is a 
matrix of coefficients. 
 

                                                 
18 When the patent stock is used as the measure of technology, the VAR is estimated using p = 6 lags as suggested 
by the AIC criterion. The LR and Hannan-Quinn (HR) criteria suggest using p = 5 lags. This does not change the 
result. 
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Following Lach and Schankerman (1989), this paper uses F-tests, corresponding to Granger 
Causality tests, as exclusion criteria in the system. The model is estimated equation by equation 
assuming trend-stationarity with breaks in trend as described earlier, and the F-tests are 
computed on the individual equations. The following steps test whether patents, productivity, 
and investment individually and collectively Granger cause each other. The steps can be 
explained as follows: 
 

Step 1. H0: yt and it do not Granger cause pt, neither individually nor collectively. 
Step 2. H0: pt and it do not Granger cause yt, neither individually nor collectively. 
Step 3. H0: pt and yt do not Granger cause it, neither individually nor collectively. 
Table 4 shows the results of the tests. 

 
From step 1, the paper concludes that lags of productivity and investment do not help predict 
current levels of the patent flow, whereas the tests in step 2 show that lags of both patents and 
productivity do have predictive power for current productivity. For investment, there is 
evidence that lags of investment are important for prediction. Furthermore, at the 10 percent 
level it is rejected that patents and productivity jointly can be dropped from the regression, 
although neither has explanatory power individually. Since the theoretical prior is that patents 
help predict investment, the paper chooses to include patents and productivity in the investment 
equation. 
 
Based on the results of the exclusion restrictions, the paper follows the recursive identification 
structure used for the VAR in section V.A to restrict the matrix C, such that it is lower 
triangular. Ignoring the constant and other exogenous variables, the restricted system of 
equations can then be written as 
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where effects of the orthogonal disturbances on the endogenous variables are normalized in the 
it-equation, as indicated by the row of ones. The matrix of coefficients on the disturbance terms 
indicates the causal ordering by being lower triangular such that a shock to patents, εt, is 
allowed to have immediate effect on the remaining endogenous variables. The coefficient 
estimates of the endogenous variables in the restricted system are shown in table 5 together with 
standard errors of the estimates and the variance-covariance matrix of the residuals from the 
regressions, Σ̂ . It is important to note that the matrix of coefficients on lagged endogenous 
variables is lower triangular in this restricted system. This means that there is no feedback from 
changes in productivity to patents as was the case in the benchmark model in section V.A. 
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Since the residuals can be decomposed into orthogonal disturbance terms it is of interest to 
identify the effects that these orthogonal disturbances have on the endogenous variables. To do 
this, the symmetric variance-covariance matrix of the error terms is analytically solved as 
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where 2

iσ is the variance of the orthogonal error term i, for i = ε, η, and τ. 
The 6 distinct elements of the variance-covariance matrix yield a system of 6 equations in 6 
unknowns.19 Solving this system of equations allows the paper to find the coefficients on the 
shocks and the variances of the disturbances. Parameter estimates are given in table 6. Impulse 
response functions from the restricted model are then computed by simulation and shown in 
figure 11. It is confirmed that productivity responds negatively to the arrival of new technology 
as a shock to εt, which is the shock associated with the flow of patents, leads to a decrease in 
productivity. The paper therefore concludes that the results are robust to restricting the system 
in order to obtain more precise parameter estimates. 
 
Research and Development 
 
R&D expenditures, which are an input to the production of new technologies, precede any 
future patents and may lead to inventions that are not patented. It is therefore of interest to see 
how productivity responds to an R&D shock. For this analysis, the paper uses data on 
investment in privately financed R&D for the period 1935–199720. The resulting impulse 
response functions from a trivariate VAR with R&D, patents, and productivity are shown in 
figure 12. As theory predicts, the system shows that patents indeed increase significantly after 
an R&D shock and that productivity responds negatively in the short run. However, an 
interesting feature of the impulse response of productivity to an R&D shock is the positive 
effect after around 7 years. This is likely due to leaving out the relatively slow rate of diffusion 
of products during the Electrification period in the beginning of the 20th century. Using R&D 
data over the period 1935–1997, when the speed of diffusion tended to be faster, makes it 
possible to identify the eventual positive effects of new technology on productivity. 
 
That the time period is important can also be seen from the corresponding response of 
productivity to a patent shock in figure 12. This figure shows a response similar to what is 

                                                 
19 The 6 unknowns are the three parameters, α, β, and δ, together with the three variances of the orthogonal 
disturbance terms, 2

εσ , 2
ησ , and 2

τσ . 

20 Data on R&D for 1997 are an estimated value. The results are robust to ending the R&D sample in 1996. A 
dummy for WWII is left out in this subsection, as the number of observations is smaller. 
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observed with an R&D shock.21 The equivalent responses from a bivariate VAR (not shown) 
with either patents or R&D and productivity for the period 1935–1997 show similar responses.  
That is, patent data succeed in identifying the initial short-run response and the future positive 
response. The paper concludes that the results are robust to using different measures of 
technology. 
 
The observation that VARs, using either R&D data or patent data, produce equivalent impulse 
responses supports the validity of patent data as a measure of technological progress. However, 
the fact that impulse response functions based on the sample period 1935–1997 show a different 
pattern than when based on the full sample indicates the importance of further analysis of sub-
samples of the data. 
 
The pre-IT period 
 
One can argue that the increase in the rate of patenting after 1985 explains a large part of the 
result since productivity growth was relatively low around this period. The estimations were 
therefore repeated, leaving out the period 1986–2002. This did not change the conclusions but 
only yielded a further negative response of productivity to a patent shock and consumption still 
exhibited a temporary increase after a patent shock. However, the initial response of investment 
was muted and became negative after a few years, matching the negative response of output. 
Overall, limiting the analysis to the period before the surge in patenting in 1985 and thereby 
only including the pre-Information Technology (IT) period does not change the conclusions but 
only renders responses of productivity to technology shocks that are more negative. 
 
The fact that the response of investment is more negative while the data show a longer-lasting 
slowdown in productivity when considering the pre-IT period may indicate that the faster rates 
of diffusion in the last part of the 20th century may be very important for understanding and 
identifying any economic contractionary or expansionary effects of new technology. This is so, 
because the more negative response of investment in the early period is an indication of slow 
diffusion where firms postpone investments until the new technology has been further 
improved. As seen in figure 5, the rate of adoption of electricity among American households 
was slower than the equivalent adoption rate for the internet. This paper therefore now considers 
any possible differences between the pre-WWII and the post-WWII periods. 
 

VI.   PRE- AND POST-WWII 

The sample is now divided into two sub-periods. The pre-WWII period covers the years  
1889–1940 while the post-WWII period extends over 1948–2002. Doing this allows 
technological progress to affect productivity differently during the Electrification period, when 
the diffusion of technology was relatively slow, than during the IT period, when diffusion 
happened more rapidly. 

                                                 
21 The trivariate VAR was estimated under several different specifications for the ordering of the variables. The 
resultant responses look similar to the ones illustrated in figure 12 and are therefore not reported. 



 22 
 
 
The Electrification period was a period over more than 30 years and was a period during which 
several important GPTs were invented and implemented. Because of the relatively slow rate of 
diffusion for electricity, it is very likely that learning and reorganization processes within firms 
were relatively long lasting, leading to more pronounced negative effects on productivity in the 
pre-WWII period than in the post-WWII period. For the IT period, adoption of the internet 
started immediately after the invention in 1991 and the speed of diffusion was fast already from 
the beginning. Therefore, one should expect shorter-lasting negative effects on the macro 
economy since any positive network externalities will arrive faster with a high rate of diffusion 
relative to a slow diffusion process. 
 
A further argument for dividing the data into two periods, before and after WWII, is the change 
in volatility. Figure 2, panel B, shows how productivity growth exhibited larger volatility in the 
pre-WWII period where the standard deviation of the growth rate is 0.039, than after WWII, 
where the standard deviation is merely 0.016. Similarly is it the case for the growth rate in 
patent applications which also experienced a decrease in the variance after WWII. 
 

A.   VAR Estimation on Two Sample Periods 

The impulse response functions from a bivariate VAR with patents and productivity in the two 
sub-samples are shown in figure 13. For both the pre- and the post-WWII periods the AIC 
suggests using p = 1 lag. However, because of the slow diffusion of technology during the early 
period, more lags may be needed. The figure therefore also shows the response functions using 
4 lags. As seen, the response functions are robust to using different lag lengths. 
 
The difference between the two periods is easily seen. In the pre-war period, productivity 
depicts the temporary slowdown as seen when using the full sample. On the contrary, in the 
post-war period, there is no evidence of a temporary slowdown. Instead, the positive effects of a 
technology shock are now prevalent such that productivity increases significantly after 2-3 
years. Including more lags in the estimation postpones the significantly positive effect another 
couple of years but without evidence of a productivity slowdown. This result is very important 
for understanding the productivity slowdown during the Electrification period and after 1973. 
The paper finds evidence that technology, indeed, can lead to a temporary productivity 
slowdown as seen in the early period. However, from this analysis it can be concluded that the 
productivity slowdown after 1973 does not seem to be a result of the arrival of new technology. 
 
In panel A of figure 13 with pre-WWII data, the long-run positive effects of technological 
progress on productivity do not show up when using 1 or 4 lags. This may be due to only 
considering a sub-sample period when diffusion was considerably slow. Figure 13, panel A, 
therefore also estimates the VAR using 9 lags. This consumes many degrees of freedom but 
may provide an indication that the long diffusion lags are important. Indeed, when including 
more than 8 lags the future positive effects do show up in the long run, although insignificantly, 
while still depicting a temporary slowdown in the short run. 

 
For the pre-WWII period, responses of other variables than productivity look similar to the 
responses using the entire sample period and are therefore not reported. For the post-WWII 
period there are important differences that must be further analyzed. The following therefore 
focuses on the post-WWII period which can yield important insights for the current literature. 
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B.   Post-WWII VECM 

If there is evidence of cointegrating relationships when considering the post-WWII period 
separately, a vector error-correction model (VECM) may provide a better description of the data 
than stationarity around a deterministic trend with breaks. Furthermore, the inclusion of a break 
in trend in the regressions may partly explain the lack of a productivity slowdown in the later 
period. It is therefore of interest to examine the system of equations without exogenously 
removing the 1973 trend break. 
 
When looking at the full sample period and at the pre-WWII period only, there is no evidence of 
cointegration and the results are robust to different specifications. However, cointegrating 
relationships for the post-WWII period cannot be rejected at a 5 percent level. Results from a 
cointegration test in the bivariate system for this period are reported in panel A of table 7 and 
panel B reports corresponding tests in trivariate systems. At a 5 percent level, the paper cannot 
reject one cointegrating relationship in the system. This section therefore examines the 
responses to a patent shock under the assumption that a VECM best describes the post-WWII 
data. Impulse response functions with 95 percent confidence intervals calculated by Hall 
Bootstrap22 methods are reported in figure 14. Panel A of this figure illustrates the responses of 
patents and productivity to a patent shock in a bivariate VECM. Each row in panel B depicts 
responses to a patent shock, based on a VECM with three variables where the third variable 
changes, according to the measure of interest. Lag length is determined mainly based on AIC 
estimates. The corresponding VARs without imposing cointegrating relations and without 
deterministic trends in the regressions are also estimated in figure 15.23 
 
Figure 15, panel A, reports the impulse response functions from a bivariate VAR with patents 
and productivity. Panel B of figure 15 reports the equivalent responses from trivariate VARs. 
The organization of the variables corresponds to the ordering from the VECM analysis. The 
responses for productivity, consumption, investment, and output, as measured by GDP, 
generally show equivalent pictures whether estimated from a VECM or a VAR. 
 
Figure 14, panel A, with VECM results reports that labor productivity does not display a 
significant slowdown after a patent shock but that productivity increases significantly after 
several years. In figure 14, panel B, consumption increases slowly but the response remains 
statistically indistinguishable from zero at a 5 percent level. However, the corresponding VAR 
with no cointegration in figure 15, panel B, does depict a significant response. Investment and 
output slowly converge to a significantly higher level. When based on a VECM, hours do not 
show a significant response but do indicate that labor input use is reduced in the long run after 
the arrival of new technology. However, when estimating the response of hours based on a VAR 
with no cointegration, as illustrated in panel B of figure 15, hours do not demonstrate a 
reduction in input use in the long run. If hours are truly constant, such that long-run labor input 
use is unchanged after the arrival of new technology, then the post-WWII impulse response 

                                                 
22 Efron bootstrap confidence intervals were also computed. Hall confidence intervals tend to show more 
significant results than Efron estimates. However, the overall conclusions derived from impulse response functions 
using these confidence intervals were unchanged. 

23 Impulse responses with trend and break (not shown) depict responses that lead to unchanged conclusions. 
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functions can be matched by a standard growth model with labor held constant, assuming that 
technology arrives exogenously through slow diffusion. The theoretical implications will be 
discussed in section VII. 
 
The VECM analysis confirms results from the previous section, that there is not evidence of a 
significant slowdown in the post-WWII period after the arrival of new technology. That any 
transitory contractionary effects of a new invention are more prevalent in the pre-war period 
indicates the importance of further analysis of the consequence of the rate of diffusion and 
learning for the economic effects. It is left for future research to explore these differences in 
more thorough detail. Instead, the paper now estimates the importance of technology shocks for 
variations in productivity at different horizons. 
 

C.   Variance Decomposition 

In the neoclassical models, a large focus has been put on the role of technological progress. 
Using the historical data in this paper, it is possible to estimate the importance of a patent shock 
for the variation in productivity. Table 8, panel A, shows the results from a decomposition of 
the forecast error variance during the two sub-sample periods under different assumptions about 
the data in a bivariate analysis with patents and productivity. Panel B of table 8 reports results 
using R&D as a measure of technology instead of patents and panel C displays the results if a 
third variable is included in the system. 
 
In the period 1889–1940, 37 percent of the variation in productivity can be explained by the 
patent shock at a 50 year horizon. Similarly, in the post-WWII period 61.5 percent of the 
variation is explained by the technology shock when estimating in a VAR with deterministic 
trend assumptions but almost 90 percent is explained when taking into account possible 
cointegration during the sample period. These numbers indicate that patents explain a large 
fraction of long-run variation in productivity and that patent data therefore do capture the arrival 
of new technology. As a result, the paper concludes that technology shocks, indeed, are 
important for fluctuations in productivity. Equivalently, R&D explains around 27 percent of the 
variation in productivity. However, in the case of R&D, the sample period includes the war time 
years.  
 
Generally, technology shocks, identified with patents, seem to explain a larger fraction of the 
variance of productivity in the post-war period than in the earlier period. However, the estimates 
in table 8 are smaller than the results computed by Francis and Ramey (2004). Through a  
long-run specification, they find that technology shocks explain more than 90 percent of the 
variance of productivity on a horizon longer than three years. That patents only account for up 
to 90 percent of the forecast error variance of productivity at a horizon of 50 years is an 
indication that also other sources than technology are important for explaining long-run 
fluctuations in productivity. It is therefore likely that human capital can be important, also in the 
long run, when explaining fluctuations in productivity growth. 
 
Many economists focus mainly on determining the effects of new technology on productivity at 
a business cycle horizon. As an example, Beaudry and Portier (2006) have argued that news 
about future technology can lead to an economic expansion in the short run. However, the  
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variance decomposition in table 8 illustrates that the arrival of new technology as measured by 
new patent applications only have little importance for the variation in productivity at a horizon 
shorter than three years. After five years, approximately 24 percent of the variation in 
productivity is explained by patents in the pre-WWII period while around 18 percent of the 
variation is explained in the post-WWII period when estimating with a VAR. 
 
To further explore the importance of technology shocks at the business cycle horizon, table 8, 
panel C, reports the variance decomposition results for the post-WWII period when based on a 
trivariate system. The table shows that technology shocks alone are not important for explaining 
business cycle fluctuations since less than seven percent of the variation is explained by patents 
at a horizon shorter than five years. However, technology is important for explaining variations 
in investment and output in the long run. Furthermore, when consumption, output, or hours 
worked are included in the system, the variation in productivity explained by patents at a 
horizon of 50 years remains around 90 percent when estimated by a VECM (not shown) and the 
overall conclusions are not sensitive to the ordering of the variables in the systems. 
 

VII.   THEORETICAL IMPLICATIONS OF THE RESULTS 

The main purpose of this paper is to provide empirical, statistical evidence for how the economy 
responds to the arrival of new technology. However, the result that technology shocks are not 
important for explaining business cycle expansions has important implications for current 
theoretical macroeconomic research. The real business cycle model predicts that a technology 
shock has an immediate and positive impact on the economy. However, from the present 
analysis, this paper concludes that this result does not match the data. The next important step is 
therefore to explore which models can explain these empirical findings. 
 
The post-WWII response functions point in the direction of incorporating slow diffusion when 
modeling technological progress. A model with a continuum of plants that adopt the new 
technology at different times is therefore an appropriate setting for incorporating slow diffusion. 
Rotemberg (2003) has a model which incorporates the diffusion of technological innovations 
that can lead to temporary slowdowns in output. However, this coincides with fluctuations in 
hours worked that do not correspond to the present empirical findings. Therefore, an S-shaped 
adoption rate cannot alone explain the empirical results. 
 
The pre-WWII period is not only affected by slow diffusion but also by temporary adverse 
effects that significantly decrease labor productivity. One promising line of research is therefore 
to explore the importance of learning and the influence of the stock of human capital that may 
facilitate the adoption of new technology. On this issue, Bartel (1989) showed that large 
businesses that are introducing new technologies are more likely to have formal training 
programs and that formal training of workers have a positive impact on productivity. Therefore, 
more skilled labor in the post-1948 period compared to the early part of the sample may enable 
easier and faster learning and thereby shorten the time-lag until any positive effects show up in 
the productivity data. This is also evidenced by Bartel and Sicherman (1999) who confirm that 
workers in industries with higher rates of technological change have more human capital. 
Compatibility problems between old and new technologies may also play a role in the early part 
of the sample and including such factors may improve the performance of a theoretical model 
explaining the effects of technological progress on productivity over long sample periods. 
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VIII.   CONCLUSION 

This paper has argued that patent application data can be used as a valid measure of 
technological progress. Using vector autoregressions on data from 1889 to 2002, this paper 
concludes that when examining the full sample period aggregate labor productivity responds 
negatively in the short run after technological progress occurs. This result is robust to several 
different methodological specifications and to utilizing the stock of patent applications and 
R&D data as alternative measures of technology. 
 
The paper found evidence that the effects of technology shocks on productivity have changed 
substantially over the last century. This may be a result of changes in the rate of diffusion of 
technology since diffusion has been faster in the post-WWII period than it was in the pre-WWII 
era. A faster rate of diffusion can lead to shorter-lasting negative effects of technology shocks, 
and future positive effects on productivity will then show up in the impulse response functions. 
The effect of human capital may also be very important since more skilled labor facilitates the 
adoption of new technology. That there are important changes over the sample period is indeed 
what the data demonstrate. Using data from 1889–1940, productivity is estimated to be lower 
than the initially forecasted level following a technology shock, after which it slowly reverts 
back to the initial forecast and a further increase. On the contrary, data on 1948–2002 do not 
show significant negative effects on productivity. Instead, significantly positive revisions in the 
forecast are observed. Similarly, investment and output follow a path equivalent to that of 
productivity. Further examination of the importance of the rate of diffusion and the amount of 
skilled labor for the response of labor productivity to a technology shock is a subject for future 
research. 
 
Variance decompositions support the role of patent statistics as a measure of technological 
progress since variations in long-run productivity are explained mainly by patents. However, the 
analysis also shows that technology shocks are not very important in explaining business cycle 
fluctuations. The empirical findings in this paper therefore have important theoretical 
implications. The results point toward the importance of incorporating slow diffusion, human 
capital, and learning in macroeconomic models when trying to understand the effects of 
technological progress on productivity. 
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Table 1. Augmented Dickey Fuller Unit Root Tests 

 Alternative Hypothesis 

 Constant Term, No Time Trend Constant Term, Linear Time Trend 

Patents 1.193202 -0.043288 

Productivity 0.069758 -1.678276 

Note: 4 lags are used. Variables are in log-levels over the full sample, 1889–2002. 
MacKinnon 5% and 10% critical values for rejection of the null of a unit root are -2.8879 and -2.5807, respectively 
for case 1 with an intercept but no trend included. When a constant term and a linear trend are included, the critical 
values are -3.4512 and -3.1507, respectively. 
 

 

Table 2. Granger Causality Tests 

Null hypothesis   

Panel A F-stat P-value 

Productivity does not Granger cause patents (levels) 0.77926 0.54122 

Patents do not Granger cause productivity (levels) 5.18307 0.00077* 

Productivity does not Granger cause patents (differences) 0.73067 0.53600 

Patents do not Granger cause productivity (differences) 6.50808 0.00045* 

   

Panel B   

Consumption does not Granger cause patents (levels) 0.48862 0.74406 

Patents do not Granger cause consumption (levels) 2.14049 0.08123 

Investment does not Granger cause patents (levels) 0.61309 0.65417 

Patents do not Granger cause investment (levels) 0.75838 0.55478 

Note: 4 lags are used when testing in levels. 3 lags are used when testing in differences. 
*Rejected on a 1% level. 
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Table 3. Great Inventions 

Year Product 

1894 First hydro-electric facility at Niagara Falls* 

1895 X-rays discovered by Wilhelm Roentgen*** 
Diesel locomotive invented**** 

1903 Airplane**. Steam turbine generator*** 

1905 Patenting of alloy of nickel and chromium, Nichrome, making electric toasters possible*** 

1906 Radio** 

1926 Television** 

1927 Polyvinyl chloride (PVC)*** 

1933 Polyethylene**** 

1934 Diesel locomotive and radar innovated **** 

1945 Atomic bombs dropped in Japan*** 

1953 Microwave oven** 

1971 Intel introduces the microprocessor*** 

1975 Bill Gates and Paul Allen found Microsoft*** 

1981 IBM introduces the PC*** 

1983 
Cell phone** 
Apple Computer introduces the Macintosh computer*** 
Microsoft releases Microsoft Windows 1.0*** 

1991 Internet** 

Source: *Jovanovic and Rousseau (2005). 
**Alm and Cox (1996). 
***National Academy of Engineering. 
****Mench (1975), pp. 127–28, table 4-4. 
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Table 4. Exclusion Tests in a Restricted Model 

 Null hypothesis F-statistic P-value 

Step 1 (pt) pt does not Granger Cause pt 54.02592 0.000000 

Step 1 (yt) yt does not Granger Cause pt 1.236390 0.300998 

Step 1 (it) it does not Granger Cause pt 1.910400 0.115306 

Step 1 (yt and it) yt and it do not Granger Cause pt 1.367494 0.221240 

    

Step 2 (pt) pt does not Granger Cause yt 3.544856 0.009778 

Step 2 (yt) yt does not Granger Cause yt 42.12399 0.000000 

Step 2 (it) it does not Granger Cause yt 0.581868 0.676527 

Step 2 (pt and it) it and pt do not Granger Cause yt 2.544901 0.014986 

    

Step 3 (pt) pt does not Granger Cause it 0.881667 0.478175 

Step 3 (yt) yt does not Granger Cause it 1.201055 0.315762 

Step 3 (it) it does not Granger Cause it 5.888828 0.000290 

Step 3 (pt and yt) pt and yt do not Granger Cause it 1.939921 0.063181 

Note: 4 lags are used. A time trend, a change in the intercept in 1930, a break in trend in 1973, and dummies for the 
Great Depression and WWII are included.  
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Table 5. Coefficient Estimates of the Restricted Model 

Variable Patents Productivity Investment 

P(-1) 1.006301** 
(0.096138) 

-0.064572* 
(0.034109) 

0.304491 
(0.274178) 

P(-2) -0.118558 
(0.137876) 

0.055203 
(0.048012) 

-0.419511 
(0.385404) 

P(-3) -0.200454 
(0.136704) 

-0.104881** 
(0.047861) 

0.295276 
(0.388206) 

P(-4) 0.193563** 
(0.094011) 

0.120116** 
(0.033607) 

-0.323420 
(0.279470) 

Y(-1) - 0.517956** 
(0.090733) 

0.796636 
(0.760687) 

Y(-2) - 0.185034* 
(0.102279) 

-0.249734 
(0.846228) 

Y(-3) - 0.308067** 
(0.100219) 

0.194143 
(0.825519) 

Y(-4) - -0.111920 
(0.085658) 

0.388071 
(0.730636) 

I(-1) - - 0.398163** 
(0.107580) 

I(-2) - - 0.004190 
(0.119179) 

I(-3) - - -0.087063 
(0.110917) 

I(-4) - - 0.063423 
(0.090265) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=Σ

0302.00017.00012.0
...0005.00001.0
......0047.0

ˆ  

Note: Constants and time trends with breaks, as described in the text, were included in the regressions. 
Standard errors in parentheses. 
(**) Denotes significance at the 5% level. 
(*) Denotes significance at the 10% level. 
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Table 6. Parameter Estimates for the Restricted Model 

Parameter Value  Parameter Value 

α 3.9167  2
εσ  0.0003 

β 0.0833  2
ησ  0.0056 

δ 0.2973  2
τσ  0.0243 

 
 

Table 7. Cointegration in Post-WWII Data 

Hypothesized number of 
cointegrating relations Trace Statistic 5 percent critical value 1 percent critical value 

Panel A. Bivariate system 

Patents and Productivity:    
0 22.57 15.41 20.04 

At most 1 3.53 3.76 6.65 

    

Panel B. Trivariate systems 

Consumption:    
0 36.06 29.68 35.65 

At most 1 9.56 15.41 20.04 

Investment:    
0 35.13 29.68 35.65 

At most 1 15.34 15.41 20.04 

Output:    
0 36.21 29.68 35.65 

At most 1 8.38 15.41 20.04 

Hours:    
0 34.94 29.68 35.65 

At most 1 8.41 15.41 20.04 
Note: The test allows for a linear deterministic trend in data. 1 lag in differences is included. The paper only shows 
results for up to 1 cointegrating relation since this is accepted. 
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Table 8. Variance Decomposition 

Panel A. VAR with patents and productivity 

 1889–1940 (VAR) 1948–2002 (VAR) 1948–2002 (VECM) 

Year Patents Productivity Patents Productivity Patents Productivity 

1 0.0000 0.2128 0.0000 0.4461 0.0000 0.2214 

2 0.4271 2.3610 0.7884 3.5887 0.3083 0.6125 

3 0.3661 2.7362 1.8375 8.2642 0.3297 0.5604 

5 0.4914 23.8217 3.6410 18.4600 0.2856 4.1188 

10 0.9458 33.6160 5.9150 36.3111 0.1731 29.8711 

20 1.2758 36.8177 7.2418 51.1076 0.2511 68.0240 

50 1.2914 36.9073 7.9620 61.5152 0.9252 89.8874 
Note: Columns for “patents” indicate the percentage of the forecast error variance for patents explained by productivity. 
Similarly, the percentage of forecast error variance for productivity explained by patents is indicated under columns labeled 
“productivity”. Year 1 is the time of the shock. 
1889–1940 includes a time trend, a change in intercept in 1930 and a dummy for the Great Depression. 4 lags are used. 1948–
2002 includes a time trend and a break in trend in 1973 in the case of VAR. The VAR employs 1 lag. Including 2 lags only 
increases the fraction of the variation in productivity explained by patents. In the case of VECM, no break in trend is included 
and 1 lag in differences is used. 
 
Panel B. VAR with R&D and productivity 

 1935–1997 

Year R&D Productivity 

1 0.0000 0.3337 

2 1.1559 0.3999 

3 0.8784 5.4773 

5 2.5449 16.9040 

10 6.2682 25.2598 

20 6.9241 27.1433 

50 6.9924 27.3293 
Note: Based on a bivariate VAR with R&D and productivity. 4 lags included together with a trend and a break in trend in 1973. 
The column for “R&D” indicates the percentage of the forecast error variance for research and development explained by 
productivity. Similarly, the percentage of the forecast error variance for productivity explained by R&D is indicated under the 
column labeled “productivity”. Year 1 is the time of the shock. 
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Panel C. VAR with patents, productivity, and a third variable 

 1948–2002 (VAR) 1948–2002 (VECM) 

Year C I Y H C I Y H 

1 0.9553 0.0287 0.6880 0.0462 1.1842 1.1876 0.0111 0.0070 

2 1.0160 0.2402 0.6965 1.4168 0.8943 2.1753 0.4471 0.8798 

3 1.3657 1.0359 1.4694 2.4789 0.8290 3.4458 0.5286 2.9929 

5 3.1418 4.4170 6.6761 2.7745 1.2287 6.6531 0.9606 5.6318 

10 10.9690 14.4791 19.7172 3.0942 3.5132 16.2715 8.6216 10.6952 

20 19.8131 27.1267 30.7217 3.3264 8.4499 32.3941 31.4676 17.4414 

50 24.3104 41.4140 41.0630 3.6470 15.6607 54.1356 60.1973 24.9481 
Note: The columns indicate the percentage of the forecast error variance explained by patents. Year 1 is the time of the shock. 
Based on a trivariate system with patents, productivity, and a third variable as indicated in the table. 
1948–2002 (VAR) includes a time trend and a break in trend in 1973. The VAR employs 1 lag. In the case of VECM, no break 
in trend is included and 1 lag in differences is used for C, Y, and H. 0 lags in differences are used when I is included, following 
the AIC choice. 
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Figure 1. The Flow of Technologies 

 

Figure 2. Patents and Productivity 

Panel A. Total Utility Patent Applications 

 
 

 

 

 

 

 

 

 

Panel B. Private Business Labor Productivity and Productivity Growth 

 

 

 

 

 

 

 

 

 

  
 

Figure 3. Total Patent Applications and Patents Granted 

 

 

 

 

 

 

 

 

   Note: Patent applications are sorted by application year. Patents granted are sorted by grant year. 
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Figure 4. Diffusion of Aggregate Electric Power in Manufacturing 

 

 

 

 

 

 

 

 

 

 

 

 

 
        Source: Du Boff (1979) and author’s calculations. 
        Note: Aggregate electric power is the sum of primary electric motors and the proportion of total    primary power 

engaged in producing electricity for intra-plant use. Linear interpolation is used in place of missing observations. 
 
 

Figure 5. Spread of Products into American Households 

 
Source: W. Michael Cox, Federal Reserve Bank of Dallas. 
Note: Airplane is percentage of air miles traveled per capita relative to miles traveled in 1996. Automobile refers to 
the number of motor vehicles relative to persons age 16 and older. For further explanation, see Alm and Cox (1996). 
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Figure 6. Responses of Patents and Productivity to a Patent Shock, 1889–2002 
 
 

Panel A. VAR in levels. No trends or dummies included. 
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Panel B. VAR in levels. Time trend, change in intercept, 1930, change in slope, 1973. 
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        Panel C. VAR in levels. Time trend, change in intercept, 1930, change in slope, 1973, dummies 

for The Great Depression and WWII. 
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Panel D. VAR in levels. Time trend, change in intercept, 1930, change in slope, 1973, 
 change in slope, 1985. 
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                                       Panel E. VAR on HP-filtered data. 
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            Note: The solid line signifies the impulse response function. The thick dashed lines indicate 
                            2 standard error bands estimated by Monte Carlo. The horizontal dashed line indicates the 
                            zero-line. 
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Figure 7. Responses to a Patent Shock 

 
                               Panel A. Full sample period, 1889–2002 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard error 
bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. Each row of responses 
comes from a trivariate VAR where the third variable is as indicated by the right hand column. A time trend 
with break in trend in 1973, a change in intercept in 1930, and dummies for The Great Depression and 
WWII are included in the estimation. Notation is as follows: C = consumption, I = investment, Y = real 
GDP = output, and H denotes hours worked. 
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                               Panel B. Shorter than full sample period 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard 
error bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. The response 
functions are from two different trivariate VARs. Data for wage inequality (W) cover the period 1927–
1998. 4 lags are used. A time trend with break in trend is included together with dummies for WWII and 
1987–88 and a change in intercept in 1945. Income inequality (Income) covers the period  
1917–1998. 4 lags are used. A time trend with break in trend is included together with dummies for the 
Great Depression, WWII, and 1987–88 and changes in intercept in 1930 and 1945. 

 

Figure 8: Stock prices, 1889–2002 

                               Panel A. January values of stock prices 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard error 
bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. The responses are from a 
VAR with patents, productivity, and stock prices. A time trend with break in trend in 1973, a change in 
intercept in 1930, and dummies for The Great Depression and WWII are included in the estimation. SP1 
denotes January values of the stock price index. 
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                               Panel B. June values of stock prices 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard error 
bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. The responses are from 
a VAR with patents, productivity, and stock prices. A time trend with break in trend in 1973, a change in 
intercept in 1930, and dummies for The Great Depression and WWII are included in the estimation. SP6 
denotes June values of the stock price index. 

 

Figure 9. The Stock of Patents 
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Figure 10. Shock to the Stock of Patents, 1889–2002 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard error 
bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. The responses are from a 
VAR with the stock of patents and productivity. A time trend with break in trend in 1973, a change in intercept 
in 1930, and dummies for The Great Depression and WWII are included in the estimation. p = 6 lags are used as 
suggested by the AIC. However, the response functions are robust to using five lags. 

 
 

Figure 11. Responses to a Patent Shock in a Restricted Model, 1889–2002 
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Note: The solid line signifies the impulse response function to a one unit shock to the orthogonal error term in 
the patent equation. The horizontal dashed line indicates the zero-line. A time trend with break in trend in 1973, 
a change in intercept in 1930, and dummies for The Great Depression and WWII are included in the estimation. 
4 lags are used. The responses indicate the numerical responses of the logarithm of the given variable. The size 
of the shock is different than in the previous figures since the normalization in the system is different. 
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Figure 12. Response of Productivity to an R&D and a Patent Shock, 1935–1997 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard error 
bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. The responses are from a 
VAR with R&D, patents, and productivity. The time period covers 1935–1997. A time trend with break in 
trend in 1973 is included in the estimation. p = 4 lags are used as suggested by the AIC. The right hand 
column depicts responses of productivity to either an R&D shock or a patent shock. The left hand column 
depicts responses of patents and R&D to a shock to R&D and patents, respectively. 
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Figure 13. Two Sample Periods 

 
                                               Panel A. 1889–1940 
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p = 9 lags: 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard error 
bands  estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. The responses are from 
a VAR with patents and productivity over the time period 1889–1940. The first row employs p = 1 lag in the 
estimation, whereas the second row uses 4 lags. The third row employs p = 9 lags. A time trend with a 
change in the intercept in 1930 is included in the estimation. If a dummy for The Great Depression is 
included, the overall response is unchanged. However, it is then only significant when using 4 and 9 lags. I 
choose to leave out this dummy in order to keep the maximum degrees of freedom. 
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                                                Panel B. 1948–2002 
p = 1 lag: 
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p = 4 lags: 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 2 standard error 
bands estimated by Monte Carlo. The horizontal dashed line indicates the zero-line. The responses are from a 
VAR with patents and productivity over the time period 1948–2002. The first row employs p = 1 lag in the 
estimation whereas the second row uses 4 lags. A time trend with a break in trend in 1973 is included in the 
estimation. 
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Figure 14. Responses from a Post-WWII VECM, 1948–2002 

 
Panel A. Bivariate VECM with patents and productivity 
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 Note: The solid line signifies the impulse response function. The thick dashed lines indicate 95 percent 
confidence intervals estimated by Hall bootstrapping methods with 10,000 draws. The horizontal dashed line 
indicates the zero-line. The responses are from a VECM with patents and productivity over the time period 
1948–2002. 1 lag in differences is included to be consistent with the following responses. However, using 0 
lags in differences as suggested by the AIC does not change the responses, although the productivity response 
does not become statistically significant until a few years later when using 0 lags in differences. 

 
Panel B. Trivariate VECM with patents, productivity, and a third variable 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 95 percent 
confidence intervals estimated by Hall bootstrapping methods with 5,000 draws. The horizontal dashed line 
indicates the zero-line. The responses are from a VECM with patents, productivity, and a third variable, 
depending on the measure of interest. The time period is 1948–2002. For consumption, C, 1 lag in differences 
is used as suggested by the AIC. For investment, I, 0 lags in differences are used as suggested by the AIC. 
For both output, Y, and hours, H, 1 lag in differences is used as suggested by the AIC. 

 
 

Figure 15. Responses from a Post-WWII VAR, 1948–2002 
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Note: The solid line signifies the impulse response function. The thick dashed lines indicate 95 percent 
confidence intervals estimated by Hall bootstrapping methods with 5,000 draws. The horizontal dashed line 
indicates the zero-line. The responses are from a VAR with patents and productivity over the time period 
1948–2002. No deterministic trend included in the estimation. 2 lags are used to be consistent with the 
corresponding VECM above. Using 1 lag as suggested by the AIC does not change the responses. 



 48 
 
 
 

Panel B. Trivariate VAR with patents, productivity, and a third variable 
 

0 5 10 15 20
-2

0

2

4

6
Response of Productivity

P
er

ce
nt

Years
0 5 10 15 20

-2

0

2

4

6
Response of C

P
er

ce
nt

Years

0 5 10 15 20
-2

0

2

4

6
Response of Productivity

P
er

ce
nt

Years
0 5 10 15 20

-5

0

5

10

15
Response of I

P
er

ce
nt

Years  
. 

 
 

0 5 10 15 20
-1

0

1

2

3
Response of Productivity

P
er

ce
nt

Years
0 5 10 15 20

-1

0

1

2

3
Response of Y

P
er

ce
nt

Years  



 49 
 
 

0 5 10 15 20
-1

0

1

2

3
Response of Productivity

P
er

ce
nt

Years
0 5 10 15 20

-1.5

-1

-0.5

0

0.5

1
Response of H

P
er

ce
nt

Years  
Note: The solid line signifies the impulse response function. The thick dashed lines indicate 95   percent      
confidence intervals estimated by Hall bootstrapping methods with 5,000 draws. The horizontal dashed line 
indicates the zero-line. The responses are from a VAR with patents, productivity, and a third variable, 
depending on the measure of interest. The time period is 1948–2002. No deterministic trend included in the 
estimation. For consumption, C, output, Y, and hours, H, 2 lags are used as suggested by the AIC. For 
investment, I, 1 lag is used as suggested by the AIC. 
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APPENDIX I 

Patent Data 
Patent data are total annual utility patent applications received by the U.S. Patent and 
Trademark Office for the period 1889 – 2002. Patents granted are from the same source. 

 
Labor productivity, hours, and output in private business 

 Data for labor productivity (Output per Manhour), real output, and hours are from Kendrick 
(1961) table A-XXII and table A-X for the period 1889 – 1946 and from the Bureau of Labor 
Statistics (BLS) for the period 1947–2002. The series are spliced by multiplying the pre-1947 
data by the ratio of the BLS data in 1947 to the Kendrick data in 1947. 

 
Real GDP, Consumption, Investment 
Real GNP is from Balke and Gordon (1989) for the period 1889–1928. Real consumption 
expenditures and gross private investment are from Kendrick (1961), Table A-IIa for the period 
1889–1928. Nominal consumption and GNP are from Kendrick (1961), Table A-IIb for the 
period 1889–1928. For the period 1929–2002, nominal GDP, chain-weighted GDP, 
consumption, and investment are from Bureau of Economic Analysis (BEA), NIPA data. The 
series were spliced in 1929 by multiplying pre-1929 data with the ratio of the NIPA data in 
1929 to Kendrick’s data in 1929. 

 
Income and Wage inequality 
The top decile and other fractiles for the income share, 1917–1998, and the top decile and other 
fractiles for the wage share, 1927–1998, are from Piketty and Saez (2003). 

 
R&D 
R&D for 1935–1997 is investment in privately financed research and development, deflated by 
chain-type price index for GDP and as computed by NPA Data Services. The data are available 
in Terleckyj, Levy, and Coleman (1997). 

 
Diffusion of products 
Data on spread of products into American households, 1900–2004, are provided by W. Michael 
Cox, Federal Reserve Bank of Dallas. 
Data on diffusion of electric power are from Du Boff (1979). 

 
Stock price index 
Data on stock prices are real S&P Composite Stock Price Index 1889–2002. Data are available 
at a monthly frequency on http://www.econ.yale.edu/~shiller/data.htm. This site contains 
updated data for chapter 26 of Market Volatility, Shiller (1989), and Irrational Exuberance, 
Shiller (2005). The January annualized values are the values used by Shiller in Market 
Volatility, chapter 26 and updated by Shiller while the June values are taken directly from the 
monthly data as computed by Shiller. 
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