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I INTRODUCTION

External financing is an important determinant for the creation of new firms and the expansion

of existing ones.1 One major obstacle to external financing is the enforceability of a financial

contract. When a firm has the ability to repudiate a contract, optimal contractual arrangements

may set endogenous financial constraints based on how much the firm can credibly repay.

Financial constraints, however, do not affect all firms equally. The financing of investment

in intangible assets, such as research and development, employee training, and expenditures

on marketing and strategy consultants, is more susceptible to financing frictions than invest-

ment in physical assets because of the inalienable and firm-specific nature of intangible assets.

This paper presents evidence that the sensitivity of firm dynamics on financial constraints is

determined by the firm’s asset tangibility. The theoretical model offers detailed predictions

on the dynamics of firms with heterogeneous technologies and assets, for which I find robust

empirical support.

Empirically, financial constraints associated with intangible assets have short-run and long-

run consequences, which I find nontrivial in magnitude. I construct new measures of firm-

level physical and intangible assets using accounting information on U.S. public firms from

Compustat data. I find that firms with a higher share of intangible assets in total assets start

smaller, grow faster, and have higher market value per unit of assets. Asset tangibility explains

34% of the variance in the size of physical assets of entrant firms, 13% of their variance in

employment, 17% of their variance in assets growth, and 7% of their variance in the market

value per unit of total assets. The predictive power remains strong for firms up to 30 years old;

however, as firms age, asset tangibility eventually ceases to matter. It is worth noting that the

market value per unit of fixed assets (i.e. Tobin’s q) also falls with age among young firms.2

While Tobin’s q levels off eventually, it does not converge among firms with different asset

tangibility. This is in contrast with market value per unit of total assets (hereafter, intangible

adjusted q), which converges among older firms. These patterns are summarized in Figure 1.3

This paper provides a simple yet comprehensive model that explains these salient features of

the data. I incorporate heterogeneous firms and dynamic investment decisions on physical

and intangible assets into a model of limited contract enforcement based on Albuquerque and

Hopenhayn (2004). Three assumptions underpin the model: (i) Young firms have insufficient

internal funds and are partly financed by external debt. (ii) Financial frictions arise because

debt contracts have limited enforceability and a repudiation-free contract sets an endogenous

borrowing limit. (iii) Physical and intangible assets affect the borrowing limit asymmetrically

because intangible assets have higher residual value for the firm if the debt contract is repudi-

ated.

1See, for example, Meyer and Kuh (1957), Fazzari, Hubbard and Petersen (1988), and Stein (2003).
2Following conventions, the replacement value is measured by the book value of physical assets.
3The sample of firms is from the annual Standard and Poor’s Compustat industrial file and the Center for

Research in Security Prices (CRSP) monthly stock file. Physical and intangible assets are constructed from cor-

responding investment expenditure using a perpetual inventory method. See Section III for detailed descriptions

of the data, variable measurement and results.
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Figure 1: Intangible Assets, Firm dynamics, and Q: Stylized Facts
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The inalienable and firm-specific features of intangible assets motivate the last two assump-

tions. Although a creditor may seize physical assets when the firm repudiates the contract,

intangible assets tend to be inalienable from the owner of the firm, whether they are manager-

ial skills developed by running the firm or patents in the name of the owner. Intangible assets

are often specific to the firm, having large value inside the firm but little value to creditors.

This feature of intangible assets also motivates the use of state-contingent debt contract, which

distinguishes my model from models with collateral constraints.4 Although collateralized debt

is the typical form of financing for certain firms, for firms that are intensive in intangible assets

it is usually not available because of the specificity of their assets. Outside investors have to

rely on direct contractual incentives.

My model offers an explanation for Figure 1 as follows. Young firms are unable to internally

finance start-up costs and large investment expenditure. They rely on external debt contracts

with an endogenous borrowing limit based on how much they can credibly repay. When firms

are financially constrained, they have a high market value per unit of assets, reflecting their

constrained size and future growth opportunities. As firms grow and pay off debt gradually,

financial constraints are relaxed over time. In the model, heterogeneous financial constraints

arise because firms have technologies that differ in the intensity of intangible assets. Firms

whose technology depends more heavily on intangible assets face tighter borrowing limits. As

a result, asset tangibility strongly correlates with young firms’ size, growth, and market value,

but it eventually ceases to matter as firms become financially unconstrained.

In the model, financial constraints lead to three sources of inefficiencies: First, they discourage

the creation of firms whose technology relies heavily on intangible assets. Second, firms,

particularly those that are intensive in intangible assets, are constrained to be inefficiently small

for a prolonged period of time. Third, firms distort investment away from intangible assets,

leading to misallocation between physical and intangible assets.

My theory of endogenous borrowing limits is most related to Albuquerque and Hopenhayn

(2004).5 In their model, physical assets are short-lived and there is no intangible assets. My

extensions are important for several reasons. Introducing long-lived assets is crucial for the

model to generate the age dynamics of Tobin’s q that are consistent with the data. Second, as a

framework for the analysis of market value and Tobin’s q, the introduction of intangible assets

is very relevant. Finally, adding heterogeneity in firms’ production technologies allows the

model to offer an intuitive yet comprehensive explanation to the short-run and long-run effects

of asset tangibility on firm dynamics, and to generate a new set of testable implications.

This paper relates in a broad sense to the literature on firm dynamics. Empirically, a large

number of studies find that firm growth depends on firm age and size.6 Various studies pro-

vide explanations to these empirical regularities, such as learning or persistent shocks to the

4See, for example, Kiyotaki and Moore (1997).
5See, for example, Clementi and Hopenhayn (2006), Quadrini (2004), and Arellano, Bai and Zhang (Forth-

coming), for related models on financial frictions and firm dynamics.
6See, among others, Evans (1987) and Hall (1987) for earlier results and Haltiwanger, Jarmin and Miranda

(2010) for more recent findings.
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production technology.7 These models without financial frictions are successful in explaining

unconditional growth characteristics, but they are unable to explain the dependence on age and

size simultaneously.8 This paper’s empirical findings shed light on an important yet lesser-

known aspect of firm dynamics. I show that intangible assets, when interacting with financial

frictions, can generate substantial heterogeneity among entrants, as well as convergence inertia

among young firms. Moreover, the share of intangible assets is an important factor in firm

dynamics, in addition to age and size.

This paper contributes to the developing literature on intangible assets.9 I construct new mea-

sures of intangible assets by accumulating firms’ selling, general, and administrative (SG&A)

expense as reported in the Compustat data. SG&A expense is an appropriate proxy of intan-

gible investment because it includes most of the expenditures firms use to accumulate intangi-

ble assets, such as employee training, marketing, research and development, and payments to

strategy consultants.10 I contribute to this literature by documenting evidence that resources

allocated to SG&A expense have long-run impacts on firm performance and market value.

The rest of the paper is organized as follows. Section II describes the model and derives its

testable implications. Section III describes the data and presents empirical findings. Section

IV concludes.

II THE MODEL

Time is discrete and the time horizon is infinite. A firm is born with zero assets and an in-

vestment project. The project requires a sunk setup cost I0 and generates flow profit F (k,a,z),
where k and a are variable capital inputs and z is an idiosyncratic revenue shock. I hereafter

refer to k as physical assets and a as intangible assets, I make the following assumptions about

the profit function and the shock.

Assumption 1: The function F : K ×A ×Z → R+ is strictly increasing, strictly concave,

and twice continuously differentiable in k and a, and increasing in z. It satisfies F (k,0,z) =
F (0,a,z) = 0 and has decreasing returns to scale, that is, ∀ι > 0, f (ιk, ιa) < ι f (k,a).

Assumption 2: The stochastic process of z has bounded and finite support Z =
[
z1,z2, ...,zN

]
,

N ≥ 2. z follows a common stationary and monotone (increasing) Markov transition function.

Decreasing returns to scale implies an optimal firm size. This property may result from limited

managerial technology, as in Lucas (1978).

7Jovanovic (1982) has a model with learning and Hopenhayn (1992) has a model with persistent shocks to the

production technology.
8See Cooley and Quadrini (2001) for a detailed discussion.
9See, among others, Atkeson and Kehoe (2005), McGrattan and Prescott (2000), and Laitner and Stolyarov

(2003).
10For detailed discussions on SG$A, see Lev (2001) and Lev and Radhakrishnan (2005). For recent papers

that use SG&A as a proxy for intangible investment, see Eisfeldt and Papanikolaou (Forthcoming) and Falato,

Kadyrzhanova and Sim (2013).
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The firm can seek debt financing from outside investors, or debtholders. I define debt by

its claim structure and control rights. In exchange for funds, the firm promises contingent

payments and control rights. If the firm repudiates the contract, the debtholders can exercise

their control rights and take over the firm. The debtholders and the firm have the same discount

rate r > 0.

The timing of actions and associated payoffs is as follows. At time zero, initial productiv-

ity z0 is realized and observed publicly. The firm signs a long-term contract. A contract c

specifies funds for the setup cost I0, delivered from the debtholders, and a triplet of functions

c : {kt ,at ,dt}∞

t=1 , which determines funds for assets kt and at delivered at the end of period

t − 1, a dividend payment dt to the firm, and a debt payment to the debtholders delivered at

the end of period t.11 Even though the dividend payment dt is made at the end of the period

t, it is contracted in period t. This timing assumption simplifies the analysis considerably.12

The triplet {kt ,at ,dt}∞

t=1 implicitly defines a sequence of payments to the debtholders, who re-

ceive all cash flow net of dividends. The funds and payments in the contract are contingent on

the history of shocks. The contingent debt repayment schedule can be viewed as a fixed pay-

ment schedule without prepayment penalties. Specifically, the contract can specify a minimum

(possibly zero) fixed payment and allow for increased payment at the borrower’s discretion.

More generally, this specification is consistent with empirical debt contracts with covenants

restricting firms’ investment, dividend and financing policies.

Although debtholders behave competitively and have full commitment to the contract, the firm

has limited liability and can choose to repudiate the contract. At the end of each period, the

firm can divert D(kt ,at) from the funds for kt and at . I refer to D(kt ,at) as the repudiation value

and will discuss its specification later. In case of a repudiation, the debtholders take control.

Because debtholders cannot run a firm, perhaps because of the lack of skills, they commit no

further funds and liquidate the business. If the firm does not repudiate the contract, it survives

to the next period with probability 1−ϕ . At the beginning of the next period, conditional on

survival, zt is realized and production takes place. The revenues from production are used to

make debt and dividend payment and to finance the new assets kt+1 and at+1. The timing of

events is illustrated in Figure 2.

Let Bc denote the contract value to the debtholders from some contract c and let Vc denote the

contract value to the firm. The value to debtholder satisfies the following recursion:13

Bc =−Rkk′−Raa′+βE
[
F
(
k′,a′,z′

)
−d′+B′c

]
, (1)

where the discount rate is β = 1−ϕ

1+r
(recall the firm survives to the next period with probabil-

11It is important for the purpose of this model that physical and intangible assets can be specified separately

in a contract. One natural extension is to assume that intangible assets are not contractible perhaps due to non-

veriafiability of the value of intangible assets. The resulting constraints would be more restrictive.
12Following this assumption, the Bellman equation (11) does not depend on dt implicitly. Even though dt is

determined before shock zt is realized, the structure of the problem (see Proposition 1) ensures that the optimal dt

is never greater than the firm’s revenue for any zt > 0 so the firm can always pay the contracted dividend if it does

not default.
13I shall use letters without subscripts to denote current period values and with a prime to denote next period’s

value.
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Figure 2: Timing of Events

ity 1−ϕ). The flow payoff to the debtholders consists of the expected present value of debt

repayment βE [F (k′,a′,z′)−d′], net of the cost of investment Rkk′+Raa′. The cost of invest-

ment, R j ≡ 1−β
(
1−δ j

)
− ϕ

1+r
, j = {k,a}, can be interpreted as follows: For every unit of

assets, the firm makes a dollar of investment at the end of the current period, which is a cost;

conditional on survival, the assets’ value in the next period after production and depreciation

is 1−δ j; with probability ϕ , the firm exits and the liquidation value is one.

The value to the firm can also be written in a recursive form:

Vc = β
(
d′+EV ′c

)
. (2)

Let ht = {z0,z2, ...,zt} denote the history of shocks up to date t and let C (ht−1) denote the

set of contracts contingent on history ht−1. A contract is feasible if the dividend payment is

nonnegative

d′ ≥ 0, (3)

for any history ht−1 and (k,a,d) = C (ht−1). This condition says that the firm is financially

constrained and has no additional source of funds.14

For a contract to be enforceable, the firm should not have an incentive to repudiate. In case of

a repudiation, the firm diverts ηk, a fraction of the value of physical assets, and ηa, a fraction

of the value of intangible assets. The repudiation value to the firm is

D
(
k′,a′

)
= ηkk′+ηaa′.

Diversion generates private benefits to the firm, which may result from various limitations

of the enforceability of the contract, for example, the inalienability of assets from the owner

of the firm, costly verification of wrongdoing, or imperfectly defined property rights. The

severity of limited enforceability is captured by ηk and ηa. When ηk and ηa are large, the

value of repudiating a contract is high. I assume 0≤ ηk < ηa ≤ 1, so the repudiation value to

14This assumption can be relaxed by allowing firms to obtain additional funds from equity holders at a cost.

However, some sort of constraints on additional funds is crucial. Without it, financial frictions of the long-term

contract become irrelevant because the first best could be achieved by having the firm pay a lump sum transfer to

debtholders at the beginning of the contract, which would be forfeited if the firm defaults.
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the firm is higher for intangible assets than physical assets. A perfect financial market requires

ηk = ηa = 0.

The firm does not have incentive to repudiate if D(k′,a′) is less than the value of continued

production; thus, the enforcement constraint is given by

β
(
d′+EV ′c

)
≥ D

(
k′,a′

)
, (4)

for any history of the shocks.

The maximum debt that can be credibly repaid from time zero can be derived as follows.

Competitive lending implies that the initial debt value is equal to the setup cost B(V0,z0) = I0.

The contracting problem at time zero is to find a feasible and enforceable contract that gives

the highest value to the firm consistent with the debtholders breaking even, so the initial value

to the firm is V0 = sup{V : B(V,z0) = I0} and the initial value to debtholders is

B(V0,z0) = sup
c∈C (z0)

{Bc (z0) |Vc (z0) =V0} (5)

An optimal contract cannot be Pareto-dominated after any realization of the shocks. Otherwise,

it would be possible to make a Pareto improvement by replacing the part of the contract that

was dominated and relaxing all previous enforcement constraints. It follows that the set of

optimal contracts can be characterized by a Pareto frontier defined for any history ht−1 and for

any feasible value to the firm V that maximizes the debt value of the contract.15

B(V,z) = sup
c∈C (ht−1)

{Bc (ht−1) |Vc (ht−1) =V} . (6)

Following (5) and (6), B(.) depends on the history ht−1 only through zt−1, because the con-

straint set is stationary and the information set is identical in these two equations. It follows

that the value to the debtholders on the Pareto frontier can be written in a recursive form:

B(V,z) = max
k′,a′,d′

V (z′),∀z′∈[z1,...,zN]

{
−Rkk′−Raa′

+βE [F (k′,a′,z′)−d′+B(V (z′) ,z′)]

}
, (7)

subject to

d′ ≥ 0, (8)

β
(
d′+EV

(
z′
))
≥ D

(
k′,a′

)
, (9)

β
(
d′+EV

(
z′
))
=V. (10)

The first two constraints ensure the feasibility and enforceability of the contract. The last con-

straint ensures the dynamic consistency: The current value to the firm is equal to the discounted

expected value of dividend payment plus the continuation value.16

15V is feasible in the sense that there exists c ∈ C (ht−1) that yields this value.
16Assuming debtholders’ full commitment to the contract simplifies the problem considerably. Without it,

the debtholders’ participation constraint would have to be imposed for every period: B(Vt−1,zt−1) ≥ 0 and the

problem could not be transformed into a standard dynamic programming problem. In principle, B(Vt−1,zt−1)≥ 0

is satisfied if the shock z never gets too low. To ensure that this assumption does not affect the solution of the

problem, I check in the numerical solution that B(Vt−1,zt−1)≥ 0 for all parameterizations used in the paper.
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In this problem, V can be viewed as a state variable. Given values V and z, the optimal contract

specifies funds for assets k′ and a′ which takes place at the end of the current period and a

dividend payment d′ which takes place after production in the next period. The contract also

specifies a continuation value V (z′) contingent on the shock z′,∀z′ ∈
{

z1, ...,zN
}
. The law of

motion for the state variable V is simple. The future value of V equals the continuation value

currently promised by the contract depending on the realization of the shock.

So far the problem is characterized by maximizing the debt value B(V,z) given V . Let W (V,z)≡
B(V,z)+V denote the total surplus of the contract. It is easy to see that the optimal contract

also maximizes W (V,z) given V . Using (10), the enforcement constraint (9) simplifies to

V ≥ D
(
k′,a′

)
.

Using (8), (10) simplifies to

V ≥ βEV
(
z′
)
.

An equivalent dynamic programming problem to (7) is given by17

W (V,z) = max
k′,a′

V (z′)≥0,∀z′∈[z1,...,zN]

{
−Rkk′−Raa′

+βEz′|z [F (k
′,a′,z′)+W (V (z′) ,z′)]

}
, (11)

subject to

V ≥ D
(
k′,a′

)
. (12)

V ≥ βEz′|zV
(
z′
)
. (13)

where R j ≡ 1−β (1−δ k)− ϕ

1+r
, j= {k,a} and D(k′,a′)=ηkk′+ηaa′. The continuation value

V (z′) must be supported by a feasible continuation contract. Any nonnegative continuation

value is feasible because it can be obtained by giving the firm a transfer equal to V (z′) and

committing to zero asset in the future. Any V (z′) < 0 is infeasible since it is inconsistent

with the nonnegative dividend constraint. V (z′) ≥ 0 is the domain restriction indicated in

problem (11). Standard dynamic programming results show that there is a unique solution to

the function W (.).

A Properties of an Optimal Contract

Contract Value and the Efficient Frontier

In problem (11), current value V sets a limit on assets k′ and a′ by constraint (12). V sets a limit

on the continuation value V (z′) by constraint (13). As a result, the choice of k′ and a′ can be

solved in a static maximization problem separate from the dynamic choice of V (z′). The static

problem is to maximize the indirect profit function

π
∗ (V,z) =max

k′,a′

{
−Rkk′−Rka′+βEz′|zF

(
k′,a′,z′

)}
, (14)

17The alternative formulation eliminates dividend payment from the problem and simplifies analysis.
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subject to (12). The solution to this problem is simple: A value V exists such that constraint

(12) does not bind. Let (k∗ (z) ,a∗ (z)) = argmaxk′,a′ {−Rkk′−Raa′+βEF (k′,a′,z′)} be the

unconstrained level of assets and define V ∗ (z) = D(k∗ (z) ,a∗ (z)) . V ∗ (z) is the smallest value

for the firm that is compatible with unconstrained expected profit maximization. If V <V ∗ (z),
the unconstrained assets level cannot be achieved and k′ and a′ are picked so that V =D(k′,a′).
If V ≥V ∗ (z), the policy is identical to one obtained in an unconstrained problem; however, this

does not mean that the firm has grown out of constraint indefinitely. Stronger conditions are

necessary to ensure that the enforcement constraint will not bind in the future. To see this, let

V n (z) denote the minimal value needed so that the enforcement constraint does not bind for at

least n≥ 1 periods. Let V 0 (z) = 0 and define

V n (z) =max
{

V ∗ (z) ,βEz′|zV
n−1
(
z′
)}
. (15)

Assume that for every z ∈ Z , a constant M < 0 exists such that V ∗ (z) ≤ M. Since V n (z) is

an increasing sequence, this assumption guarantees that the sequence is uniformly bounded

and has a limit. Denote this limit by Ṽ (z) ≡ limn→∞V n (z) . Applying Lebesgue’s dominated

convergence theorem to (15) implies that Ṽ (z) satisfies the following dynamic programming

equation:

Ṽ (z) =max
{

V ∗ (z) ,βEz′|zṼ
(
z′
)}
.

Blackwell’s sufficient conditions can be verified so the solution Ṽ (z) is unique. Ṽ (z) defines

the minimum value for the firm that is consistent with unconstrained profit maximization. Once

Ṽ (z) is reached, financial constraint no long matters. I henceforth call Ṽ (z) the efficient frontier

to capture the result that once it is reached, the total surplus of the contract cannot be improved

by manipulating the debt level. This is formally stated in Lemma 1.

Lemma 1 (i) W (V,z) is weakly increasing in V ; (ii) Let W̃ (z) be the solution to

W̃ (z) = Ez′|z
[
π
∗ (z)+βW̃

(
z′
)]
.

For all V ≥ Ṽ (z), W (V,z) is constant and equal to W̃ (z) ; (iii) For all V < Ṽ (z) ,W (V,z) <
W̃ (z) .

Proof. See Appendix.

The next two lemmas discuss concavity and monotonicity of the total surplus function W .

Lemma 2 W (V,s) is strictly concave in V when V < Ṽ (z).

Proof. See Appendix.

Lemma 3 W (V,z) is strictly increasing in V when V < Ṽ (z).
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Proof. See Appendix.

A direct implication of the strict monotonicity of W (.) in V for all V < Ṽ (z) is that the optimal

policy requires no dividends be distributed before firm’s value reaches the efficient frontier

and all earnings be allocated as debt repayment. The intuition is simple. The firm’s input

is constrained by its current value by the enforcement constraint (12). Postponing dividend

payment increases the continuation firm value and relaxes future constraints. Formally,

Proposition 1 If V < βEz′|zṼ (z
′) , the optimal policy requires no dividends be distributed.

B Model Implications

This section considers model implications for firm dynamics and Tobin’s q. When possible,

I derive analytical implications of the model. I also complement the analysis with numerical

results. The numerical model is solved by value function iteration and simulated by drawing

a large number of independent sample paths for firm shocks. Numerical solution method is

discussed in detail in the appendix.

Age Effects

Firm Size Throughout this subsection, I identify firm size through firm profit π as defined in

(14). I refer a firm as mature when when V ≥ Ṽ (z). Albuquerque and Hopenhayn (2004) show

that conditional on the revenue state of the firm, firm size grows monotonically over time. I

now show that similar argument goes through in my set-up.18

Proposition 2 Conditional on the revenue state of the firm z, firm size increases with age before

the firm matures.

Proof. Take any V < βEz′|zṼ (z
′) so the constraint (13) binds for problem (11). An interior

solution V (z′) is chosen so that the first derivative WV is equalized across all z. By the envelope

theorem,

WV (V,z) = βπV (V,z)+WV

(
V
(
z′
)
,z′
)
.

This implies that WV is strictly decreasing over time conditional on z, when πV > 0. By the

strict concavity of W (V,z), decreasing WV implies increasing V . Recall from (14) that πV >
0 implies the borrowing constraint binds, in which case k′ and α ′ are chose such that V =
D(k′,a′). It is easy to see that increasing profit follows directly from increasing V .

18Firm size in the Albuquerque and Hopenhayn (2004) model refers to working capital, which is a convenient

metrics because their model implies a simple monotonic relationship between working capital and equity value.

In a multiple assets setting, profit is a more preferrable metrics because it is not affected by the substitution effect

between different assets.
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Figure 3: Tobin’s Q and Intangible Adjusted Q: Data

Tobin’s q The result that conditional on z, the value of W and V are increasing sequences also

has important consequence on Tobin’s q. Conventionally, Tobin’s q is calculated as ratio of the

market value to the replacement value of a firm, with the latter measured by the book value of

physical assets. As shown in the left panel of Figure 3, this ratio is usually greater than one. It

is higher for younger firms. It falls and levels off among older firms.19 The change of Tobin’s q

over the life cycle is quite pronounced. Tobin’s q is on average around 12 for entrant firms but

falls to around 2 for firms 15 years or older. Similar age pattern holds if the replacement value

is measured by the book value of total assets (i.e. the sum of physical and intangible assets).

The intangible adjusted q is around 3 for entrant firms but fall to around 1 among older firms.

Although Tobin’s q is widely use as an indicator for investment and market valuation, the age

dynamics of Tobin’s q has largely eluded the literature on firm dynamics. I now address this

evidence under my framework.

Let Wt denote the market value, which is given by the sum of the expected discounted stream

of earnings net of investment expenditure on physical and intangible assets ik and ia, plus

liquidation value upon exit and the setup cost. Investment expenditure satisfies the following

assets accumulation equations:

ik,t = kt+1− (1−δ k)kt , (16)

and

ia,t = at+1− (1−δ a)at , (17)

It is convenient to express Wt through (16) and (17) so it does not depend on investment

explicitly:

Wt = Et

∞

∑
s=1

β
s−1

(
ϕ

1+r
kt+s+

ϕ

1+r
at+s+βF (kt+s,at+s,zt+s)

−β [kt+s+1− (1−δ k)kt+s]−β [at+s+1− (1−δ a)at+s]

)
+ I0. (18)

19The sample of firms is from the annual Standard and Poor’s Compustat industrial file and the Center for

Research in Security Prices (CRSP) monthly stock file. See Section III for detailed descriptions of the data,

variable measurement and results.
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Following the convention, Tobin’s q is defined as the ratio of the market value of the firm to

the replacement cost of physical assets.20 Omitting the time subscript, this gives

qTobin ≡ W
I0+ k′

. (19)

In my set-up, the firm’s market value and investment opportunity set include both physical and

intangible assets. It is natural to extend this definition to include the value of intangible assets.

Define the intangible adjusted q by

qad j ≡ W
I0+ k′+a′

. (20)

The next result relates the market value of the firm to W .

Lemma 4 The market value of a firm captures the expected surplus value of its financial con-

tract and the book value of its physical and intangible assets:

W=W + k′+a′+ I0.

Proof. See Appendix.

It follows immediately that

qTobin =
W +a′

I0+ k′
+1. (21)

and

qad j =
W

I0+ k′+a′
+1,

It is easy to see from (21) that asset accumulation affects the dynamics of Tobin’s q both di-

rectly (through the replacement value of assets) and indirectly (through the market value). To

motivate the analysis, consider a simplified case with only one type of assets (e.g. k). Recall

that when the firm is in a set where V < βEz′|zṼ (z
′), equity value is increasing and the borrow-

ing constraint is binding. Substituting V =D= ηkk′ gives qTobin= ηkW (V,z)/(ηkI0+V )+1.

By the strictly monotonicity and convexity of W (V,z), qTobin is decreasing in V condition on

the revenue state. Once a region is reached where V = Ṽ (z), age will have no further growth

effects. Analytical results are difficult to derived with two types of assets. But simulation re-

sults are presented in Figure 4. The graph shows that Tobin’s q decreases with age before it

levels off. Similar result holds for intangible adjusted q as well. This age pattern has a simple

intuition. Before the firm reaches the efficient frontier Ṽ (z), assets are constrained to be small;

however, the market value is less affected because it is a forward-looking variable that captures

the assets’ revenue potential. In summary,

20I choose to include the sunk cost I0 in the firm’s fixed assets so that the definition of Tobin’s q is comparable

to the one in Albuquerque and Hopenhayn (2004). In real life, the sunk cost I0 may or may not be recognized as

a firm’s fixed assets.



15

Figure 4: Tobin’s Q and Intangible Adjusted Q: Simulated Model

Proposition 3 Conditional on the revenue state of the firm, Tobin’s q decreases with age before

the firm reaches its optimal size.

Contrast this result with one from a model without asset accumulation. When k is modeled as

working capital. Book the book value consists of only I0 because working capital depreciates

completely every period. Thus qTobin = W (V,z)/I0 + 1. When the firm is in a set where

V < βEz′|zṼ (z
′), the value W is increasing with age. It follows that Tobin’s q is also increasing

with age. Thus, in my model, limited enforcement and capital accumulation both contribute to

the negative relationship between firm Tobin’s q and age before a firm matures.

Figure 4 presents simulation results of Tobin’s q and intangible q under the full model. The

model predicts that the average Tobin’s q is high among young firms. It then decreases with

age and levels off among older firms. Similar pattern holds for intangible adjusted q.

Intangible Intensity In the previous subsections, I show that financial friction constrains the

firm from operating on the efficient scale. I now turn the focus to another channel of in-

efficiency: the debt contract distorts investment and leads to inefficiency allocation between

physical and intangible scale. Intuitively, a firm invests relatively more intensively in k′ when

it is constrained because the enforcement constrained is more restrictive in intangible assets.

Proposition 4 Conditional on the revenue state of the firm, the share of intangible assets in-

creases with age before the firm reaches its optimal size.

Proof. See Appendix.

In the model, the age variation in the share of intangible assets reflects financial frictions of

a firm being relaxed over time whereas the cross-sectional variation reflects the severity of

financial constraints across firms due to heterogeneous production technologies.21

21Quantitatively, the age variation in the share of intangible share is small in the model and in the data.
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Asset Tangibility Effects

As Figure 1 illustrates, firms with different asset tangibility experience very different size and

Tobin’s q dynamics. Firms with a higher share of intangible assets are smaller with a higher

Tobin’s q at their early stage of life. In this subsection, I discuss the implications of asset

tangibility for firm size and Tobin’s q under the optimal financial contract.

To introduce heterogeneity in asset tangibility, I assume that firms differ in their production

technology with respect to physical and intangible assets. I use a Cobb-Douglas profit function

F (k,a,γ) = ez
(
kγa1−γ

)θ
, where γ is a firm-specific production parameter drawn from a com-

mon distribution when a firm is started.22 With this parameterization, it is easy to check that

the share of physical assets is increasing in γ among unconstrained firms.23

Since detailed implications are very difficult to derive for the full model, I first provide ana-

lytical results under two simplifying assumptions: (i) Firms have identical and deterministic

shock z; (ii) The repudiation value of physical assets is zero, so D(k′,a′) = ηaa′. I then present

numerical results for the full model at the end of this subsection.

Under the simplifying assumptions, firm i’s problem is a special case of (11). All previous

results go through, except that the value and policy functions will depend on the firm specific

production technology parameter γ . The efficient frontier also depends on γ . To see this, note

that with deterministic z, the efficient frontier equals the smallest V that is compatible with

unconstrained expected profit maximization. In particular, let V ∗ (γ) = D(k∗ (γ) ,a∗ (γ)) =
ηaa∗ (γ) . Following Proposition 1, d = 0 before the efficient frontier is reached; thus, V = βV ′,
implying V is growing. If the enforcement constraint does not bind in the current period, it

will never bind in the future; therefore, Ṽ (γ) = V ∗ (γ). The enforcement constraint becomes

Ṽ (γ) = ηaa∗ (γ). It is easy to check that a∗ (γ) is decreasing in γ so Ṽ (γ) is decreasing in γ .

In other words, a firm with a production technology that is more intensive in intangible assets

has a higher efficient frontier.

The next result discusses the monotonicity of entrant size in the share of intangible assets.

Proposition 5 Conditional on the revenue state z0 of the firm, entrant firms with a higher share

of intangible assets have lower equity value (V0) and smaller asset size (k0 and a0).

Proof. See Appendix.

This result has a simple intuition. Firms with a higher share of intangible assets face more

restrictive constraints; consequently, their initial size is smaller.

Growth in intangible assets is also related to the share of intangible assets. Following V = ηaa′

and zero dividend, ηaa′ =V = βV ′ = βηaa′′, so intangible assets grow at rate 1/β −1 before

22An alternative way is to introduce heterogeneous costs of investment. For example, the costs of investment

in k relative to a is firm-specific: Rk,i/Ra,i =Ci for some constant Ci.
23For unconstrained firms, γ and τ satisfy the following relationship:

1−β (1−δ k)
1−β (1−δ a)

=
(

1
τ
−1
)

γ

1−γ
.
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the firm reaches the efficient frontier. The growth rate is zero afterwards. Given the initial

size premium and the negative relationship between γ and Ṽ (γ), firms with low γ – implying a

technology more intensive in intangible assets – take a longer time to mature.

Proposition 6 Conditional on the revenue state z0 of the firm, entrant firms with a higher share

of intangible assets have higher Tobin’s q.

In the last subsection, I establish the general result that Tobin’s q decreases with age while the

firm is in a set where V < Ṽ (z). Once a region is reached where V = Ṽ (z), age will have no

further effect on Tobin’s q. Conditional on the revenue state z of the firm, V and W will be

identical among all matured firms. Following (21), Tobin’s q will be determined by the relative

size of physical and intangible assets, which are determined by the firm’s technology parameter

γ . It follows immediately that a firm with low γ have a high share of intangible assets and high

Tobin’s q. This result combined with the monotonicity of Tobin’s q in age implies that:

Corollary 1 Conditional on the revenue state and age of the firm, firms with a higher share of

intangible assets have higher Tobin’s q.

The next result focuses on firm growth.

Proposition 7 Among young age categories, firms with a higher share of intangible assets on

average have higher growth rate in firm value (V ) and intangible assets (a).

This result is a reflection of financial constraint being relaxed with age. Among young age

categories, firms with lower γ are more likely to be constrained. The share of intangible assets

predicts the constrained status and in turn predicts firm growth and size. As age increases,

more firms become unconstrained and the correlation between the share of intangible assets

and growth diminishes. With deterministic z, the convergence in growth rate is exact since all

firms have zero growth eventually. With stochastic z, the growth rate of an unconstrained firm

depends on the realization of the shock. Conditional on z, growth converges in expectation.

Figure 5 summarizes simulation results of the full model. The figure plots the average firm size,

growth, Tobin’s q and intangible adjusted q for three groups of firms with high, median, and

low shares of intangible assets. The model predicts that firms with a high share of intangible

assets start with a smaller size and higher growth rate. The size and growth rate of the three

groups converges. Firms with a higher share of intangible assets also have higher Tobin’s q

and intangible adjusted q. These predictions are qualitatively in line with empirical evidence

presented in Section I and III.

As a final note to the discussion of model implications, my model is clearly not the first to gen-

erate implications for firm size and growth dynamics that are qualitatively in line with empirical

evidence. Notable examples in the literature are Jovanovic (1982) and Hopenhayn (1992). The
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Figure 5: Intangible Asset, Firm Dynamics and Q: Simulated Model

main difference of my approach is that it imposes much less structure on the stochastic process

of the shock. Different from Albuquerque and Hopenhayn (2004) and Cooley and Quadrini

(2001), my model generates a nontrivial role for the accumulation of heterogeneous assets in

explaining Tobin’s q dynamics. This provides a mapping from the nonobservable financial

friction to readily observed variables on assets and investment. It also leads to a new set of

testable implications which I explore in the next section.

III EMPIRICAL RESULTS

I use data on U.S. public firms to derive key empirical results, which are consistent with the

implications of my model.

A Data

The sample of firms is from the annual Standard and Poor’s Compustat industrial file and the

Center for Research in Security Prices (CRSP) monthly stock file. The sample period is 1979

to 2009. I select the sample by first deleting any firm-year observations for which the book

value of total assets (item AT), physical assets (i.e., gross property, plant, and equipment, item

PPEGT), employment (item EMP), or sales (item SALE) is either zero or negative. Following
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the literature, I remove firm-year observations if large discontinuities in total assets or assets

stock exist because these discontinuities are likely to be caused by mergers and acquisitions.

Firms with primary standard industrial classifications between 4900 and 4999 or between 6000

and 6999 are omitted because the theory is unlikely to be applicable to regulated or financial

firms. I deflate all series by the GDP deflator from the U.S. Bureau of Economic Analysis.

Measuring Assets

Compustat reports the book value of a firm’s gross property, plant, and equipment (item PPEGT);

however, firms may have an incentive to overreport because of favorable tax treatments on de-

preciation. To alleviate this problem, I impute physical assets from physical investment ex-

penditure because investment is harder to misreport and potentially more reliable. I calculate

implied depreciation rate for every firm using

δ k,i = E

[
iit−1

k̂it−1

− k̂it− k̂it−1

k̂it

]
, (22)

where k̂it is the reported book value of physical assets (item PPEGT) and iit is investment

expenditure (item CAPX) minus the sale of property, plant, and equipment (item SPPE). I

eliminate firms with δ k,i < 0 or δ k,i > 1. For the rest of the sample, I impute physical assets

with a perpetual inventory equation and set the initial stock to the first observation of physical

assets (item PPEGT) for each firm.

kit =
(
1−δ k,i

)
kit−1+ iit−1, (23)

with ki0 = k̂i0.

One way to check the consistency between the data on investment flow and the stock of physical

assets is to examine the implied depreciation rate in (22). I group the sample of firms with

0 ≤ δ k,i ≤ 1 into 17 industries using the Fama and French (1997) classification and calculate

the mean of δ k,i by industry. As reported in Table 1, the depreciation rate ranges from 0.056 for

automobile industry to 0.085 for the oil industry. This range is consistent with the literature.

In contrast to property, plant, and equipment, some assets are not physical by nature. Common

examples of intangible assets are brand name, managerial skills and firm-specific technologies.

The challenge of measuring intangible assets is well recognized. Under the U.S. generally ac-

cepted accounting principles (GAAP), internally generated intangible assets are not reported.

Estimations on firm-level intangible assets are scarce.24 To bridge this gap, I extend the ap-

proach in Corrado, Hulten and Sichel (2006), which imputes aggregate intangible assets using

investment data, to the firm level. Intangible investment is measured by expenditure on Selling,

General, and Administrative (SG&A). The GAAP defines the Selling, General, and Adminis-

trative expense as all commercial expenses of operation, such as expenses not directly related

24One exception is Eisfeldt and Papanikolaou (Forthcoming), whose similarly impute organization capital for

U.S. public firms. They find that firms with more organization capital have higher stock returns than their industry

peers, suggesting that these firms are more risky.
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to production, incurred in the regular course of business pertaining to the securing of operating

income. Companies usually explicitly discuss the level and changes of SG&A in the manager-

ial discussion and analysis (MD&A) section of their 10-K financial reports. In general, SG&A

includes most of the expenditure related to business intangible outlays and knowledge input,

such as advertising and marketing expense, (company-sponsored) research and development,

employee training, payment to systems and strategy consultants, and the cost of setting up

and maintaining internet-based supply and distribution channels. As a consequence, SG&A

expenditure usually has a long-term impact on firm performance because it supports activities

that improve employee incentive, operation efficiency, and customer loyalty (Lev (2001) and

Lev and Radhakrishnan (2005)). I construct the stock of firm i’s intangible assets ait using a

perpetual inventory equation

ait = (1−δ a)ait−1+SGAit−1, (24)

where SGAit is the SG&A expenditure (Compustat annual item XSGA). Two additional ele-

ments are needed to implement (24): initial intangible assets ai0 and depreciation rate δ a. I

set the initial stock of intangible assets to the first reported value of intangible assets (item

INTAN). The model provides some guidance on the choice of δ a. It suggests that if physical

assets and intangible assets have different depreciation rates, market value per unit of assets of

mature firms does not converge; neither does firm size. As a benchmark, I set identical depre-

ciation rate for physical and intangible assets δ a = δ k = δ . I choose δ = 0.08, which is within

the range of depreciation rates estimated from the data on physical assets. I also experiment

with higher values for δ a.25

Using imputed physical and intangible assets, the share of physical assets in total assets is

defined as τ it ≡ kit/(kit+ait), so the share of intangible assets is 1− τ it . Growth in physical

assets is defined as gk,it = (kit+1− kit)/kit .Growth rates of other variables are defined similarly.

Age is defined as the number of years (plus one) since the year of the company’s initial public

offering (IPO). The year of IPO is approximated with the earliest of (a) the year in which the

firm appears on CRSP; (b) the year in which the firm is included in Compustat; and (c) the

year for which a valid link is found between CRSP and Compustat (based on item LINKDT).

I describe the measurement of other variables in the Appendix.

B Empirical Findings and Tests of Model Implications

Characteristics of Physical and Intangible Assets

The first important observation is that the share of intangible assets shows substantial cross-

sectional variations. Figure 6 plots the distribution and kernel density estimation for the asset

25To examine how the choice of δ a and δ k affects the empirical results, I first check that by setting δ a = δ k =
0.08, the data shows convergence in the market value per unit of assets and firms size among unconstrained firms

with different asset composition. I also experiment with alternative empirical measures of intangible assets by

setting different values for δ a up to 0.35. I find that most of the empirical results in the paper remains qualitatively

the same. This is not surprising because δ a mostly affect the size variation in asset composition. The qualitative

relationship between asset composition and firm dynamics should not be affected.
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Figure 6: Asset Tangibility Distribution Among Entrants

tangibility measure τ = k/(k+a) among entrant firms. τ ranges from below 5% to above

95%. A substantial, and nearly constant, fraction of the sample spread across every bin of the

histogram between 10% and 90%. A relatively larger fraction of the sample has τ between 15%

and 25%. To examine the dynamics of τ , I classify firms into three classes according to their

initial share of intangible assets. The sample of firms is restricted to those with observation at

age 1. The class of firms with a high share of intangible assets includes firms whose initial τ is

less than or equal to 0.4; the class with a low share of intangible, above 0.7; and the class with

a medium share of intangible assets, between 0.4 and 0.7. As shown in the upper left panel of

Figure 1, this initial difference in asset tangibility persists even among older firms. 26

Intangible Assets and Firm Dynamics

This subsection presents the key empirical findings of the paper. The goal is to document a

systematic relationship between intangible assets and firm dynamics. To help illustrate key

findings before proceeding to a more formal analysis, Figure 1 plots the mean of several vari-

ables of interest for different classes of intangible shares. The upper right and middle left

panels of Figure 1 plots firm size (the natural logarithm of sales and employment) for firms

with a high, medium, and low share of intangible assets. Several observations emerge. First,

young firms are smaller on average. This general pattern holds for firms in all classes. Sec-

ond, a substantial size premium exists: Among entrants, firms with a low share of intangible

26I also regress asset composition on age using fixed effects estimations with year fixed effects and firm fixed

effects. The coefficient on age is close to zero (0.0004), which again suggests that the age variation in asset

composition is very small.
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assets are on average 6 times as large as firms with a high share of intangible assets. The size

premium diminishes over time: Among older firms, firm size more or less converges. The first

observation implies an inverse age and size relationship that is consistent with the literature.

The second and third observations are the key: Substantial heterogeneity exists in the size of

young firms, and this heterogeneity is related to the share of intangible assets in total assets.

The size difference diminishes over time and exhibits convergence inertia.

The middle right panel of Figure 1 plot growth in total assets. Similar patterns emerge. First,

young firms grow fast on average. Growth rate drops substantially as age increases. Second,

an initial growth rate premium exists. Among entrants, firms with a high share of intangible

assets grow faster on average. Third, the growth rate premium diminishes over time. The

average growth rate of different classes converges among old firms.

The lower left panel of Figure 1 plots Tobin’s q. Among young age categories, firms with

a higher share of intangible assets on average have higher market value per unit of assets.

Although this value falls among firms in all three classes, it remains permanently higher for

firms with a low share of physical assets. This is in contrast with the lower right panel of

Figure 1, which shows that the market value per unit of total assets converges among old

firms. This result may not seem surprising given previous discussions on the two different q

measures. Nevertheless, this result cannot be derived from a standard q-theory model (e.g.,

Hayashi (1982) and Summers (1981)). The finding that the market value per unit of physical

assets is significantly higher among firms with large shares of intangible assets suggests that the

market value captures the value of intangible assets. It also suggests that including intangible

assets in the model is essential in order to explain the heterogeneity in the market value of old

firms.

The rest of this subsection describes the tests of the following hypotheses:

Hypothesis 1 (asset tangibility and firm dynamics): Among entrants, firms with a higher share

of intangible assets on average have higher growth rate, smaller size, higher Tobin’s q and

higher market value per unit of assets (i.e. intangible adjusted q).

Hypothesis 2 (the diminishing effect of asset tangibility): The sensitivity of firm growth and

size with respect to the share of intangible assets diminishes with age.

Hypotheses 1 and 2 follow directly from Proposition 7. Among young cohorts, the share of

intangible assets predicts the probability of being financially constrained. Because the con-

strained status of a firm is reflected in it growth rate, firm size and market value per unit of

assets, the share of intangible assets also predicts these aspects of firm dynamics. The predic-

tive power diminishes as the firm ages and becomes constrained.

To test Hypothesis 1, I estimate the following regression model using the sample of entrant

firms.

yi jt = α0+α1τ i jt+µ j+θ t+ ε i jt , (25)

where i, t and j denote firm, year, and industry respectively. y is the variable of interest: firm
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size, growth, Tobin’s q, or intangible adjusted q. I use different measures for sizeit : the natural

logarithm of (i) physical assets, (ii) total assets, (iii) sale, and (iv) employment. τ i jt is the

share of physical assets in total assets. Because entrant size varies by industry, I control for

detailed industry fixed effects.27 I also control for year fixed effects to abstract from cyclical

consideration. I use four different measures of firm size: the size of physical assets, total

assets, employment, and sales. As shown in columns (1) to (4) Table 2. τ returns positive and

significant coefficients for all measures of firm size. The model explains a significant fractions

of the variance in all specifications. τ alone explains 13% and 8% of the variance in entrants’

employment and sales.

I use two measures for the dependent variable: growth in physical assets and growth in total

assets. As shown in columns (5) and (6) of Table 2, τ returns positive and significant coeffi-

cients in both specifications. Similar to the size regression in (25), the model explains a sizable

fraction of the variance in entrant growth. τ alone explains 4% of the variance in the growth in

physical assets and 17% of the variance in the growth in total assets.

Columns (8) and (9) of Table 2 summarizes results for the Tobin’s q and intangible adjusted q

regressions. The coefficients of τ in both cases are negative and significant. τ alone explains

26% of the variance in Tobin’s q and 7% of the variance in intangible adjusted q.

To test Hypothesis 2, I pool all firm-year observations and estimate the following regression

model:

yits = α0+α1sAges+α2sτ its×Ages+α3τ its+µ i+θ t+ ε its,

where y is the variable of interest: firm size, growth, Tobin’s q, or intangible adjusted q. Ages

is a set of dummy variables, which take a value of 1 if age equals s and 0 otherwise. τ its is

the share of physical assets in total assets. To investigate the short-run and long-run effects of

τ , I run the regression, using two measures: current τ or initial τ . Current τ is the share of

physical assets in total assets measured in the current year; initial τ is measured upon entry and

restricted to the sample of firms with observation at age 1. I control for year and industry fixed

effects.

Estimation results are summarized in Table 3 and 4. I only report coefficients of τ its and

selected age categories of τ its×Ages for space considerations. Note that the sum of coefficients

(α2s+α3) represent the marginal effect of τ on the left-hand-side variable for age s. Because

the model uses age 1 as the default category for the set of age dummy variables, the coefficient

α2s also represents the average difference in the marginal effect of τ between age s and age

1 firms. Starting from of column (1) of Table 3, the coefficient on current τ is positive and

significant, suggesting that entrant firms with a higher share of physical assets on average have

larger a larger stock of physical assets. The coefficients on τ×Age are negative and significant

for all ages and are progressively smaller for older age categories. This result suggests that

the marginal effect of tangibility on firm size diminishes as age increases. Column (3) and (5)

show that similar patterns hold in terms of total assets and sales in general. Similar results hold

27Industry fixed effects are based on the 17-industry classification following Fama and French (1997).
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with initial τ as shown in columns (2), (4), and (6). The coefficients on τ ×Age are negative

and significant for even among age categories above 20 years of age.28 This result suggest that

initial asset tangibility has long lasting effects on firms size.

I do not discuss detailed results of Table 4 for brevity of discussion. Overall, the diminishing

age effects of tangibility discussed previously carry over to models with firm growth, Tobin’s q

and intangible adjusted q. The regression results confirm the stylized facts on asset tangibility,

firm dynamics and q illustrated in 1.

Robustness

Robustness to Other Measures of Assets Previous results are robust to alternative measures

of assets. I measure physical assets by their reported book value (item PPEGT) and use the

ratio of reported physical and total assets (i.e., τ̂ ≡PPEGT/AT) as an indication of the asset

tangibility. Because the reported total assets include current assets (e.g., inventory and cash)

but not internally generated intangible assets, it is a noisy measure of the firm’s total productive

assets. Nevertheless, if the market (e.g., equity traders and lenders) uses this information and

the share of intangible assets indeed affects investment and lending decisions, it is likely that

τ̂ is correlated with firm dynamics. I perform the same regression analyses using τ̂ in place of

τ . Estimation results show that the coefficients of τ̂ are in the same direction as those for τ but

the coefficients of τ̂ are generally smaller. Moreover, the R2 from models using τ̂ are generally

smaller.

Robustness to Other Explanations One important theoretical explanation of the size and

growth dynamics is the selection theory: Some firms are more likely to exit perhaps because

of adverse shocks and tend to have higher growth and higher market value conditional on

survival. If the selection effect is higher among firms with a higher share of intangible assets,

it may confound the effect of financial frictions. Fortunately, this is not the case. I estimate a

binomial model and find that firms with a higher share of intangible assets on average are less

likely to exit.29

IV CONCLUSION

I study the effects of asset tangibility on firm dynamics in the presence of endogenous financial

frictions. I present new evidence on the age and asset tangibility effects of firm size, growth,

and Tobin’s q, and show that it can be explained by a model of limited contract enforcement. I

have chosen to keep the model as simple as possible, extending a standard model with the min-

imum elements needed to derive new implications. In spite of its simplicity, the model matches

28The only exception is that the initial τ ×Age is negative but not significant for young age categories. This

may be because young firms experience large volatility in sales.
29Exit is defined when a firm drops out of the sample. In the Compustat data, this may mean a firm stops

operation, a firm exits the stock market, or it is merged or acquired by another firm.
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a rich set of the properties of firm dynamics that have been documented here or previously in

the literature. I have shown that modeling the accumulation of intangible assets is crucial for

explaining the level and age dynamics of Tobin’s q. By exploring properties of heterogeneous

firms, the model also offers a new set of testable implications for financial constraints.

In this paper, I mainly focus on the age dynamics of firms and present the majority set of new

evidence by age categories. Clearly, age is not the only dimension of firm growth. Older firms

acquire younger firms all the time, allowing them to update their technology or to expand their

market share. In this case, firm age, size and financial constraints do not necessarily follow a

monotonic relationship. Simple extensions can accommodate this by distinguishing a firm from

a production technology. A firm can be allowed to expand (e.g., by acquiring new production

units) or to switch (e.g., by changing their main line of production) its production technology.

There are other interesting extensions. For instance, aggregate fluctuations can be accommo-

dated, the framework I propose in this paper can prove useful in analyzing the cyclicality of

firm dynamics and studying the growth impact of severe financial constraints during a reces-

sion.
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Table 1: Estimated Physical Depreciation Rate

Industry Mean No. of

depreciation rate observations

Food 0.072 3,030

Mines 0.102 1,065

Oil 0.098 3,644

Clothes 0.084 2,562

Durables 0.081 3,180

Chemicals 0.075 1,785

Consumption goods 0.082 2,948

Construction 0.082 3,646

Steel 0.065 1,629

Fabricated products 0.069 1,053

Machinery 0.076 13,838

Automobile 0.063 1,290

Transportation 0.079 3,414

Retail 0.076 6,081

Other 0.097 28,076

Notes: This table reports results from fixed effects estimation with robust standard errors. The

dependent variables are the natural logarithm of physical assets (column 1 and 2), the stock of physical

and intangible assets (column 3 and 4), and sales (column 5 and 6). Tangibility is defined as the ratio of

physical assets to the stock of physical and intangible assets. Current tangibility is measured at the

beginning of the year. Initial tangibility is measured at age 1. All variables are winsorized at the 2 and

98 percent. All models are estimated with year and industry fixed effects. Coefficients are omitted for

Age and Tangibility*Age for some age categories. ***, **, and * indicate statistical significance at the

1, 5, and 10 percent test levels, respectively.



27

T
ab

le
2
:

E
n
tr

an
t

A
ss

et
T

an
g
ib

il
it

y,
F

ir
m

D
y
n
am

ic
s,

an
d

Q

P
h
y
si

ca
l

T
o
ta

l
E

m
p
lo

y
m

en
t

S
al

es
P

h
y
si

ca
l

T
o
ta

l
T

o
b
in

’s
q

In
ta

n
g
ib

le

as
se

ts
as

se
ts

as
se

ts
as

se
ts

ad
ju

st
ed

q

g
ro

w
th

g
ro

w
th

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(8
)

(9
)

T
an

g
ib

il
it

y
5
.6

2
0
3
*
*
*

3
.2

8
1
2
*
*
*

2
.9

5
5
4
*
*
*

2
.5

9
3
6
*
*
*

-0
.2

5
7
9
*
*
*

-0
.5

3
0
8
*
*
*

-2
9
.9

7
3
8
*
*
*

-2
.5

9
1
5
*
*
*

[0
.1

3
7
6
]

[0
.1

3
6
8
]

[0
.1

4
4
9
]

[0
.1

6
1
4
]

[0
.0

2
6
1
]

[0
.0

2
2
9
]

[0
.8

4
6
5
]

[0
.1

7
3
2
]

C
o
n
st

an
t

0
.2

7
9
6
*
*
*

2
.3

6
0
5
*
*
*

-2
.4

6
1
*
*
*

2
.4

5
4
2
*
*
*

0
.4

9
8
9
*
*
*

0
.8

5
8
0
*
*
*

2
6
.6

2
3
2
*
*
*

4
.3

4
5
4
*
*
*

[0
.0

6
5
9
]

[0
.0

6
5
]

[0
.0

7
2
1
]

[0
.0

8
4
1
]

[0
.0

1
4
4
]

[0
.0

1
1
5
]

[0
.5

4
9
4
]

[0
.1

0
0
3
]

N
o
.

o
f

o
b
s.

2
,5

9
3

2
,5

9
3

2
,5

9
3

2
,5

9
3

2
,5

3
0

2
,5

3
0

2
,5

9
3

2
,5

9
3

R
2

0
.6

2
3
7

0
.4

7
7
1

0
.4

1
3
0

0
.4

1
0
2

0
.2

5
0
7

0
.4

4
8
8

0
.5

2
1
3

0
.3

2
9
7

R
2

fo
r

ta
n
g
ib

il
it

y
0
.3

3
6
8

0
.1

6
8
5

0
.1

2
9
4

0
.0

7
8

0
.0

3
6
5

0
.1

7
0
7

0
.2

5
6
9

0
.0

6
6
6

N
o
te

s:
T

h
is

ta
b
le

re
p
o
rt

s
re

su
lt

s
fr

o
m

fi
x
ed

ef
fe

ct
s

es
ti

m
at

io
n

w
it

h
ro

b
u
st

st
an

d
ar

d
er

ro
rs

.
T

h
e

d
ep

en
d
en

t
v
ar

ia
b
le

in
co

lu
m

n
s

1
an

d
2

is
th

e
g
ro

w
th

ra
te

o
f

th
e

st
o
ck

o
f

p
h
y
si

ca
l

an
d

in
ta

n
g
ib

le
as

se
ts

.
T

h
e

d
ep

en
d
en

t
v
ar

ia
b
le

in
co

lu
m

n
s

3
an

d
4

is
th

e
st

o
ck

o
f

p
h
y
si

ca
l

an
d

in
ta

n
g
ib

le
as

se
ts

.
T

h
e

d
ep

en
d
en

t
v
ar

ia
b
le

in
co

lu
m

n
s

5
an

d
6

is
th

en
ra

ti
o

o
f

th
e

m
ar

k
et

v
al

u
e

o
f

th
e

fi
rm

to
th

e
st

o
ck

o
f

p
h
y
si

ca
l

an
d

in
ta

n
g
ib

le
as

se
ts

.
T

an
g
ib

il
it

y
is

d
efi

n
ed

as
th

e
ra

ti
o

o
f

p
h
y
si

ca
l

as
se

ts
to

th
e

st
o
ck

o
f

p
h
y
si

ca
l

an
d

in
ta

n
g
ib

le
as

se
ts

.
A

ll
v
ar

ia
b
le

s
ar

e
w

in
so

ri
ze

d
at

th
e

2
an

d
9
8

p
er

ce
n
t.

S
p
ec

ifi
ca

ti
o
n
s

w
it

h
cu

rr
en

t
ta

n
g
ib

il
it

y
is

es
ti

m
at

ed
w

it
h

y
ea

r
an

d
in

d
u
st

ry
fi

x
ed

ef
fe

ct
s.

S
ta

n
d
ar

d
er

ro
rs

ar
e

cl
u
st

er
ed

at
th

e
fi

rm
le

v
el

.
*
*
*
,
*
*
,
an

d
*

in
d
ic

at
e

st
at

is
ti

ca
l

si
g
n
ifi

ca
n
ce

at
th

e
1
,
5
,
an

d
1
0

p
er

ce
n
t

te
st

le
v
el

s,
re

sp
ec

ti
v
el

y.



29

Table 3: The Age Effects of Asset Tangibility on Firm Size

Physical assets Total assets Sales

Current τ Initial τ Current τ Initial τ Current τ Initial τ

(1) (2) (3) (4) (5) (6)

Tangibility (τ) 5.3048*** 5.4477*** 2.9619*** 3.1862*** 2.2653*** 2.551

[0.1112] [0.1100] [0.1106] [0.1086] [0.1340] [0.1312]

τ∗Age 2 -0.3383*** -0.2069 -0.4804*** -0.3712** -0.3534*** -0.1494

[0.1462] 0.1535] [0.1447] [0.1504] [0.1742] [0.1819]

τ∗Age 3 -0.2909*** -0.2451 -0.5923*** -0.5345*** -0.3476*** -0.1070

[0.1480] [0.1613] [0.1467] [0.1569] [0.1769] [0.1891]

τ∗Age 4 -0.4051*** -0.4003** -0.7964*** -0.6880*** -0.5170*** -0.1800

[0.1549] [0.1727] [0.1537] [0.1673] [0.1821] [0.1979]

τ∗Age 5 -0.4291*** -0.5064*** -0.8914*** -0.7768*** -0.5632*** -0.2123

[0.1617] [0.1844] [0.1602] [0.1770] [0.1891] [0.2070]

τ∗Age 6 -0.3854*** -0.4000** -0.8520*** -0.6293*** -0.5467*** -0.0296

[0.1669] [0.1957] [0.1651] [0.2067] [0.1948] [0.2183]

τ∗Age 11 -0.4618*** -0.6633*** -0.8124*** -0.7508*** -0.6620*** -0.3799

[0.1764] [0.2593] [0.1724] [02446] [0.2000] [0.2513]

τ∗Age 16 -0.4044*** -1.2583*** -0.7380*** -1.0545*** -0.7245*** -0.4033

[0.2192] [0.4309] [0.2143] [0.3873] [0.2384] [0.4275]

τ∗Age 21 -0.7892*** -2.7893*** -1.1678*** -2.2548*** -1.2111*** -1.4935**

[0.2544] [0.7881] [0.2447] [0.6747] [0.2706] [0.7268]

τ∗Age 26 -0.6882*** -3.7470*** -1.0617*** -3.0863*** -1.1987*** -2.2305**

[0.2981] [1.3480] [0.2844] [1.0136] [0.3210] [1.0864]

τ∗Age 31 -1.1126*** -4.6057*** -1.3502*** -5.3452*** -0.1512*** -5.1937***

[0.3545] [1.1427] [0.3432] [0.7630] [0.3658] [0.5563]

No. of Obs. 63,907 20,434 63,907 20,434 63,907 20,434

No. of F.E. 465 453 465 453 465 453

R2 0.5216 0.4716 0.3785 0.3399 0.3785 0.3146

Notes: This table reports results from fixed effects estimation with robust standard errors. The depen-

dent variables are the natural logarithm of physical assets (column 1 and 2), the stock of physical and

intangible assets (column 3 and 4), and sales (column 5 and 6). Tangibility is defined as the ratio of

physical assets to the stock of physical and intangible assets. Current tangibility is measured at the

beginning of the year. Initial tangibility is measured at age 1. All variables are winsorized at the 2 and

98 percent. All models are estimated with year and industry fixed effects. Coefficients are omitted for

Age and Tangibility*Age for some age categories. ***, **, and * indicate statistical significance at the

1, 5, and 10 percent test levels, respectively.
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Table 4: The Age Effects of Asset Tangibility on Firm Growth and Q

Growth in total assets Tobin’s q Intangible adjusted q

Current τ Initial τ Current τ Initial τ Current τ Initial τ

(1) (2) (3) (4) (5) (5)

Tangibility (τ) -0.5634*** -0.5535*** -30.2926**** -29.7973*** -2.9435*** -2.8724***

[0.0184] [0.0184] [0.6939] [0.6998] [0.1355] [0.1365]

τ∗Age 2 0.2259*** 0.2583*** 10.9938*** 12.9695*** 1.8240*** 2.0536***

[0.0253] [0.0239] [0.8853] [0.9467] [0.1687] [0.1741]

τ∗Age 3 0.3832*** 0.4165*** 14.8272*** 16.0657*** 2.4254*** 2.6764***

[0.0228] [0.0235] [0.8694] [0.9616] [0.1609] [0.1708]

τ∗Age 4 0.4678*** 0.4870*** 17.4802*** 18.2333*** 2.7741*** 2.8512***

[0.0225] [0.0236] [0.8617] [0.9906] [0.1606] [0.1770]

τ∗Age 5 0.5199*** 0.5097*** 18.3094*** 19.6225*** 2.9448*** 2.9813***

[0.0226] [0.0242] [0.8701] [1.0089] [0.1609] [0.1805]

τ∗Age 6 0.5269*** 0.5325*** 18.7522*** 20.0272*** 2.9175*** 2.9343***

[0.0221] [0.0237] [0.8854] [1.0369] [0.1610] [0.1837]

τ∗Age 11 0.5082*** 0.5435*** 21.1953*** 22.0190*** 3.0076*** 3.0134***

[0.0222] [0.0255] [0.9052] [1.2058] [0.1580] [0.2060]

τ∗Age 16 0.5452*** 0.5786*** 21.0106*** 23.7171*** 2.9100*** 3.2437***

[0.0223] [0.0317] [1.0761] [2.0176] [0.1655] [0.2669]

τ∗Age 21 0.5435*** 0.6156*** 21.2679*** 25.7993*** 2.8681*** 3.3122***

[0.0236] [0.0467] [1.1776] [2.9833] [0.1741] [0.3153]

τ∗Age 26 0.5380*** 0.5923*** 20.3719** 32.3260*** 2.7382*** 3.9059***

[0.0244] [0.0742] [1.3793] [6.2074] [0.1980] [0.8758]

τ∗Age 31 0.5332*** 3.4415*** 20.9721*** 17.3713*** 2.5856*** 4.3005***

[0.0261] [0.8529] [1.5149] [9.0814] [0.2022] [0.1404]

No. of Obs. 57,412 17,782 63,907 20,434 63,907 20,434

No. of F.E. 450 437 465 453 465 453

R2 0.5215 0.6194 0.3193 0.3244 0.2486 0.2804

Notes: This table reports results from fixed effects estimation with robust standard errors. The dependent

variables are the growth rate of total assets (column 1 and 2), Tobin’s q (column 3 and 4), and intangible

adjusted q (column 5 and 6). Tangibility is defined as the ratio of physical assets to the stock of physical

and intangible assets. Current tangibility is measured at the beginning of the year. Initial tangibility

is measured at age 1. All variables are winsorized at the 2 and 98 percent. All models are estimated

with year and industry fixed effects. Coefficients are omitted for Age and Tangibility*Age for some

age categories. ***, **, and * indicate statistical significance at the 1, 5, and 10 percent test levels,

respectively.
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Appendix I. Proofs

Proof of Lemma 1. (i) π (V,z) is weakly increasing in V following the monotonicity of

the constraint set. The weak monotonicity of W (V,z) in V follows immediately from the

monotonicity of π (V,z) in V applying standard dynamic programming arguments. (ii) Suppose

for all V ≥ Ṽ (z), W (V,z′) = W̃ (z′) and V (z′) = Ṽ (z′) . (11) implies that

W (V,z) = Ez′|z
[
π
∗ (z)+βW

(
Ṽ
(
z′
)
,z′
)]

= Ez′|z
[
π
∗ (z)+βW̃

(
z′
)]

= W̃ (z) .

(iii) If V < Ṽ (z) , then V < V n (z) for some n. I shall proceed with induction. For n = 1,
V < V ∗ (z) implies −Rkk′−Raa′+βEz′|zF (k

′,a′,z′) < π∗ (z). Abusing notation, let V (z′) be

the optimal continuation value given (V,z) , then

W (V,z) < Ez′|z
[
π
∗ (z)+βW

(
V
(
z′
)
,z′
)]

≤ Ez′|z
[
π
∗ (z)+βW̃

(
z′
)]

= W̃ (z) .

To proceed, suppose V <V n−1 (z) implies W (V,z)< W̃ (z) for all z∈ Z.For V <V n (z) to hold,

one need V < V ∗ (z) or V < βEz′|zV
n−1 (z′). The proof for the former case follows the same

argument as in n= 1. For the latter, the continuation policy V (z′) is such that V (z′)<V n−1 (z′)
for some z ∈ Z by induction, it follows that V = βEz′|zV (z

′)< βEz′|zV
n−1 (z′) .30

Proof of Lemma 2. This proof is similar to the proof of Lemma 3 in Appendix C in Albu-

querque and Hopenhayn (2004). First, the indirect profit function π (V,z) is strictly concave

in V following strict concavity of the production function F (.) and convexity of the constraint

set. It follows that W (V,z) is concave by Theorem 9.8 in Stokey, Lucas and Prescott (1989). If

V < Ṽ (z) , then an n exists such that V < V n (z). I shall proceed with induction on n to show

that this implies strictly concavity of W (V,z) in the neighborhood of V . For n= 1, V <V n (z)
and strictly concavity of W (V,z) in V follows strict concavity of π (V,z). Now suppose the

result hold for all z and V <V n−1 (z) and V u (z)≤V <V n (z). The optimal continuation value

V ′ (z′)< V n−1 (z′) on a subset of s with positive measure given s. Strict concavity follows by

inductions.

Proof of Lemma 3. Suppose some V2 <V1 < Ṽ (z) exists such that W (V2,z) =W (V1,z), then

concavity of W (V,z) implies W (V2,z) =W
(
Ṽ (z) ,z

)
, which contradicts Lemma 1.

Proof of Lemma 4. Substituting (18) to (19) gives the left-hand side. Expanding and com-

paring terms with (11) establishes the equality.

The following proofs are based on a Cobb-Douglas production technology F (k,a,γ)= ez
(
kγa1−γ

)θ

with deterministic z and assumes ηk = 0.

30The proof of (ii) and (iii) follows from Albuquerque and Hopenhayn (2004).
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Proof of Proposition 5. Suppose some γ2 < γ1 and V exist such that V < Ṽ (γ1) < Ṽ (γ2).
The indirect profit function is given by

π (V,γ) =max
k′,a′

{
−Rkk′−Rka′+βF

(
k′,a′,γ

)}
,

subject to V ≥ ηaa′. Equality of the enforcement constraint implies that a′ (V,γ1) = a′ (V,γ2) =
V
ηa
. It is easy to check that the optimality conditions for k′ (i.e., Rk = β

∂F(k′,a′,γ)
∂k′ ) implies

that k′ (V,γ) is increasing in γ and the indirect profit function can be simplified as π (V,γ) =
β (1−θγ)F (k′ (V,γ) ,a′ (V,γ) ,γ) −Raa′ (V,γ) ; so π (V,γ) is increasing in γ given V . Ap-

plying standard dynamic programming arguments, W (.,γ) is increasing in γ following the

monotonicity of π (.,γ) in γ . Since B(V,γ) =W (V,γ)−V, B(.,γ) is also increasing in V . By

Lemma 2 and 3, W (V,γ) is strictly increasing and strictly concave in V in a region where

V < Ṽ (γ). It follows that B(V,γ) is strictly concave in V as well. Now consider the problem

of entrants. Suppose I0 is such that the debtholders’ initial participation constrained is satis-

fies (i.e., B0 (V0,γ) ≥ I0) for some V0 ≥ 0 so the initial contract is signed. The optimal initial

equity value V0 (γ) is in a region where B(V,γ) is decreasing in V . To see this, suppose other-

wise. By the strictly concavity of B(V,γ) in V , a V̂0 exists such that V̂0 >V0 and B
(
V̂ ,γ

)
≥ I0,

which contradicts V0 = sup
{

V : B(V0,γ)≥ I0

}
. It follows that V maps one-to-one B(V,γ) ,

for all possible values of V that satisfy the optimal contract. Now define the transformation

V = B−1 (B(V,γ) ,γ), where B−1 (.,γ) is the inverse function of B(.,γ). Total differentiation of

the transformation function gives

0=
∂B−1 (B,γ)

∂B

∂B(V,γ)

∂γ
+

∂B−1 (B,γ)

∂γ
.

∂B−1(B(V,γ),γ)
∂B

< 0 follows from the argument that B(V,γ) is decreasing in V and
∂B(V,γ)

∂γ
> 0

as shown previously. It follows that
∂V (B,γ)

∂γ
= ∂B−1(B,γ)

∂γ
> 0, in particular

∂V0(I0,γ)
∂γ

> 0, which

says that given identical initial debt value (i.e. I0), the initial equity value is increasing in γ;

Following V0 = ηaa1 and the monotonicity of k′/a′ in γ , entrant asset size is increasing in γ .

Proof of Proposition 4. Let λ ≥ 0 denote the Lagrange multiplier for the enforcement con-

straint. The optimality conditions with respect to k and a imply k
a
= γ

1−γ

Ra+ληa

Rk+ληk
. Conditional

on γ , the size of physical assets relative to intangible assets is increasing in λ if ηa > ηk and

Ra = Rk.31 Recall from Lemma 2 and Lemma 3 that the total surplus value W is strictly con-

cave and strictly increasing in V . It follows that as the firm ages, the shadow value λ decreases

until the firm reaches the efficient frontier and λ reaches 0. As a result, a firm’s share of phys-

ical assets is higher than its unconstrained level and fall monotonically until the firm becomes

unconstrained.

Appendix II. Variable Measurement

Total debt is long-term debt (item DLTT) plus short-term debt (item DLC). Market value is

defined as the sum of total debt, the market value of common equity (CRSP December market

31Ra = Rk holds when δ a = δ k.



33

capitalization), and the book value of preferred stock (item PSTKRV), minus cash and short-

term investments (item CHE) and inventory (item INVT). Tobin’s q is market value divided

by physical assets. Cash flow is the sum of income before extraordinary items (item IB) and

depreciation (item DP). Cash flow rate is cash flow divided by physical assets. To alleviate

impacts of outliers, I windsorize growth and financial measures (including Tobin’s q and market

value to total assets) at 2% and 98%.

Compustat reports both stock and flow variables at the end of year t. However, the model re-

quires stock variables subscripted t to be measured at the beginning of year t and flow variables

subscripted t to be measured over the course of year t. I take any year t stock variable, for ex-

ample kt , from the year t−1 balance sheet and any year t flow variable from the year t income

or cash flow statement.

Appendix III. Numerical Solution

A Calibration

The period in the economy is one year. The interest rate is set to r = 0.04. The probability

of exit is set to ϕ = 0.1, which implies a discount rate β = 0.865. The production function is

specified as F (k,a,z) = Zez
(
kγa1−γ

)θ
.32 This production function abstracts from labor input;

nevertheless, F (.) can map to a production function with labor with an appropriate choice of

θ . For example, I can write the production function as G(k,a, l,z) = ez
(
kγa1−γ

)θ
lε−θ and

set ε = 0.95 so G(.) has a small degree of decreasing return. This parameterization makes

the production function not too different from a standard constant return to scale function

and is consistent with the literature (e.g. Gomes (2001)). Once ε is determined, θ is set

so the labor share is equal to 0.7. This implies θ = 0.25.33 The firm-specific production

parameter γ is set matches the distribution of physical and intangible assets in the data.34 I

set δ k = 0.08 and δ a = 0.08. I assume that the stochastic process for incumbent productivity

follows z′ = ρz+ε ′, where ε is assumed to follow a (truncated) normal distribution with mean

zero, standard deviation σ and finite support [−2σ ,2σ ]. I discretize the stochastic process by

two points following Tauchen (1991) and pick ρ = 0.40 and σ = 0.05 to match the mean and

variance of investment rate among old firms.35 Finally, I discretize the state space of V,V ′, k′

and a′ into 90-point uniform grids.

32The parameter Z is introduced to scale the average level of assets.
33Recall from the model’s analytical results that the size convergence of firms with different γ requires θ to be

small. To check that θ = 0.25 is consistent with this implication, I simulate a sample of firm using this θ value

and fixed all other parameters at their benchmark calibration value. I find that the variation of unconstrained total

assets size with respect to γ is small: The standard deviation is 0.11 and the average size of the medium class is

7% lower than that of the low class.
34I assume that γ is drawn from a cumulative distribution function H (γ), with support [0.1,0.9]. H (γ) is set so

that the model’s distribution of physical and intangible assets among unconstrained firms matches the distribution

of physical and intangible assets among old firms in the data. I discretize the support of γ into 5 points.
35Specifically, I set z1 = −2σ , z2 = 2σ and the transitional probability from z1 to z1 is p11 = Φ(2ρ)−

Φ(−4+2ρ) . Entrant firm’s productivity is drawn from a discrete uniform distribution over [z1,z2] .
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Table 5: Parameter values

Calibrated parameters

Interest rate r 0.04

Exit rate ϕ 0.10

Return to scale θ 0.25

Depreciation rate (physical) δ k 0.08

Depreciation rate (intangible) δ a 0.08

Shock persistence ρ 0.40

Stochastic shock variance σ 0.05

Estimated parameters

Repudiation value (physical) ηk 0.52

Repudiation value (intangible) ηa 0.87

B Solution Strategy

I solve the model numerically using value function iteration on a multigrid scheme. Given

the realization of firm-specific production technology and optimal decision rules, the model

generates a simulated panel of firms. In particular, I simulate a model economy with 10,000

firms over 200 periods. I set I0 = 0 and jointly calibrate parameters {ηk,ηa} to match key

moments of the simulated data, in particular, the size and growth rate premium associated with

intangible asset.

C Identification

The model’s implications on the dynamics of heterogeneous firms are essential for the iden-

tification of structural parameters. It is worth noting that the set up cost I0 and repudiation

values ηk and ηa have similar implication and may not be identified separately in a model with

representative firms;36 however, observations from heterogeneous firms can separately identify

I0,ηk, and ηa.

To see how identification results from the size premium associated with heterogeneous firms,

suppose entrant firm sizes are observed for three classes of firms with different γ denoted by

{L,M,H}. Identical setup cost and the enforcement constraint imply

BL
(
ηkkL+ηaaL;ηk,ηa

)
= BM

(
ηkkM+ηaaM;ηk,ηa

)
= BH

(
ηkkH+ηaaH ;ηk,ηa

)
This equation identifies ηk and ηa using observed size differentials associated with γ . Once ηk

and ηa are identified, the setup cost I0 is the level of entrant debt BL (.) = BM (.) = BH (.) = I0.

36I0 affects the initial size of entrant firms, which in turn affects the age of firms when they become uncon-

strained. ηk and ηa affect the entrant size and time to mature in similar manners as I0.
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Figure 7: Model Identification
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To illustrate how identification results from properties of the model, I plot the value and policy

functions of the model using parameter values in Table 5 except ηk = 0.3 and ηa = 0.95. The

upper left panel of Figure 7 plots total surplus value W as a function of V for firms with a low

current z, for firms with a high, medium and low share of intangible assets (i.e., γ = 0.05,0.45,

and 0.85) respectively.37 W is strictly increasing and strictly concave in V until V reaches the

threshold value: the efficient frontier Ṽ (γ). For any given value of V smaller than the threshold

value, the rate of change in W with respect to V is larger for firms with higher γ .

The upper middle panel of Figure 7 plots B as a function of V . The model predicts that as

V increases, B decreases more than one-to-one with respect to V as a result of postponing

dividend payment until V = Ṽ (γ). In the graph, the highest level of B, which I shall call B̄(γ),
is the maximum debt value that can be achieved under the optimal contract. If B̄(γ) ≥ I0,
then the optimal contract picks B0 (γ) = I0; otherwise no contract can be arranged that satisfies

debtholders’ initial incentive constraint B0 (γ) ≥ I0. The graph shows that B̄(γ) is increasing

in γ , suggesting that firms with a high share of physical capital can sustain a larger initial debt.

For any I0 that satisfies B̄(γ)≥ I0, the initial value to shareholders satisfies B0 (V0) = I0.38 Also

evident from the graph is the monotonicity of V0 (γ) in γ: firms with a higher share of physical

assets have higher V0.39 The upper right panel of Figure 7 plots the continuation value V ′ (zl)
as a function of V for firms with a low current z. For all three values of γ , V ′ (γ) increases at a

constant rate until V reaches a threshold value Ṽ (γ). This threshold value is higher for firms

with a higher share of intangible assets, reflecting their more restrictive borrowing constraints.

In a region where V ≥ Ṽ (γ) , V is not relevant for the total surplus. Many payment schedules

are possible. Here, I illustrate the case in which the firm pays interests and keeps the value to

debtholders constant.40

To illustrate the effect of a decrease in financial frictions, the middle panels of Figure 7 plot

value function and policy rules with a different parameterization: ηk = 0.05 and ηa = 0.95.

Compared to the previous parameterization, financial frictions are lower for all firms but firms

with a low share of intangible assets are most affected. These firms also reach the efficient

frontier much sooner and have a higher B̄(γ). Finally, to illustrate the effect of a decreased

spread between the repudiation value of intangible assets and physical assets, I set ηk = 0.5
and ηa = 0.75 and plot the results in the lower panels of Figure 7. As expected, this change

reduces the differences between firms. For example, the efficient frontier Ṽ (γ) are closer

between firms with different shares of intangible assets. The variation in entrant value V0 is

also smaller.

37For more compact notation, I shall suppress the argument z in the rest of this subsection.
38For any I0 ≤ B̄(γ), the I0 line crosses B(V,γ) twice as a result of the concavity of B(V,γ) in γ . The optimal

contract corresponds to the one with higher V because V satisfies V = sup{V : B(V0,z0)≥ I0}.
39Strictly speaking, this results holds when I0 is high. When I0 is sufficiently low, V0 (γ) is the same for all γ .

This the case when the initial debt is so low that the financial constraint does not bind for an entrant firm.
40To see this, recall that W (V,γ) is constant in V in a region where V ≥ Ṽ (γ). Constant B then implies constant

V .
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