

Liability Dollarization, Sudden Stops & Optimal Financial Policy

Enrique G. Mendoza
University of Pennsylvania
NBFR & PIFR

Eugenio Rojas University of Pennsylvania

Eighteenth Jacques Polak Annual Research Conference International Monetary Fund November 2-3, 2017

Motivation

- Liability dollarization (LD): Banks in EMs intermediate hardcurrency inflows into domestic-currency loans
 - 2007: Foreign currency liabilities/total liabilities = 40% in LA, 25% in E.
 Europe, 15% in others; median ext. liabilities/loans = 36% (BIS (09))
 - 1996: Foreign liabilities/assets ranged from 143% in Indonesia to 775% in Thailand (Eichengreen & Hausmann (99))
- In standard Sudden Stops (SS) models, debt is in units of tradables, but nontradables are used as collateral
 - Pecuniary ext. justifies MPP (current debt choices affect future collateral values & borrowing capacity)
 - Quantitatively, models generate deep crises, optimal MPP is timeconsistent and very effective, but LD implications are unknown.
- LD literature mostly focuses on bank solvency and balance sheet effects, but not on private non-financial borrowers.

What we do

- Propose Sudden Stops model w. liability dollarization (SSLD) and compare with SS models
 - SSLD model introduces "intermediation externality" via ex-post and ex-ante real int. rate fluctuations, and a risk-taking incentive
- Analyze optimal policy problems:
 - 1. <u>Commitment</u>: Optimal effective debt tax tackles externalities, but is time-inconsistent and does not justify capital controls.
 - 2. Conditionally efficient: Debt taxes & cap. controls (maintain credibility)
- Conduct quantitative analysis:
 - 1. Debt is higher but Sudden Stops milder (closer to data) in SSLD model
 - 2. Optimal policy removes Sudden Stops, yields 0.5% welfare gain, but is complex and subsidizes inflows often
 - 3. Simpler rules are less effective, tax debt relatively more than inflows, tend to impose capital controls during crises

Standard SS Model

Max.
$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t), \quad u(c_t) = \frac{c_t^{1-\gamma}}{1-\gamma}.$$

$$c_t = \left[\omega \left(c_t^T\right)^{-\eta} + (1 - \omega) \left(c_t^N\right)^{-\eta}\right]^{-\frac{1}{\eta}}$$

s.t.

$$q_t^* b_{t+1} + c_t^T + p_t^N c_t^N = b_t + y_t^T + p_t^N y_t^N$$
$$q_t^* b_{t+1} \ge -\kappa (y_t^T + p_t^N y_t^N)$$

Debt is issued in T units at the world price q*=1/R* (intermediation is inessential)

SSLD model: Intermediaries

- Risk-neutral banks borrow abroad at price q_t^* in T units to fund domestic loans at price q_t^c in units of domestic consumption (with a CPI p_t^c in T units)
- No-arbitrage condition:

$$q_t^c = \frac{q_t^* \mathbb{E}_t \left[p_{t+1}^c \right]}{p_t^c}$$

Ex-ante (in c) and ex-post (in c^T) real interest rates:

$$R_{t+1}^c \equiv 1/q_t^c = \frac{R_{t+1}^* p_t^c}{\mathbb{E}_t[p_{t+1}^c]}$$
 $\tilde{R}_{t+1}^c \equiv 1/\tilde{q}_t^c = \frac{R_{t+1}^c p_{t+1}^c}{p_t^c}$

 Nearly frictionless intermediation (nsc. bonds and collateral constraint are the only frictions)

SSLD model: Domestic agents

Max.
$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t), \quad u(c_t) = \frac{c_t^{1-\gamma}}{1-\gamma}.$$

$$c_t = \left[\omega \left(c_t^T\right)^{-\eta} + (1 - \omega) \left(c_t^N\right)^{-\eta}\right]^{-\frac{1}{\eta}}$$

s.t.

$$q_t^c p_t^c b_{t+1}^c + c_t^T + p_t^N c_t^N = p_t^c b_t^c + y_t^T + p_t^N y_t^N$$
$$q_t^c p_t^c b_{t+1}^c \ge -\kappa (y_t^T + p_t^N y_t^N)$$

Debt is issued in units of domestic CPI (real ex. rate):

$$p_t^c = \left[\omega^{\frac{1}{1+\eta}} + (1-\omega)^{\frac{1}{1+\eta}} \left(p_t^N\right)^{\frac{\eta}{1+\eta}}\right]^{\frac{1+\eta}{\eta}}$$

Effects of liability dollarization

1. Ex-post RIR changes alter debt repayment burden $p^c(c_t^T, y_t^N)b_t^c$

2. Ex-ante RIR changes alter resources generated by new debt

$$-q_t^* \mathbb{E}_t \left[p^c(c_{t+1}^T, y_{t+1}^N) \right] b_{t+1}^c$$

3. Risk-taking incentive lowers expected marginal cost of borrowing

$$u_T(t) = \beta R_{t+1}^* \mathbb{E}_t \left[u_T(t+1) \right] + \beta \text{Cov}_t(u_T(t+1), \tilde{R}_{t+1}^c) + \mu_t$$

Policy instruments

• Capital controls: tax θ_t on intermediaries inflows:

$$q_t^c = \frac{q_t^*}{(1+\theta_t)} \frac{\mathbb{E}_t \left[p_{t+1}^c \right]}{p_t^c}$$

• <u>Domestic regulation</u>: tax τ_t on domestic debt:

$$q_t^c p_t^c b_{t+1}^c + c_t^T + p_t^N c_t^N = p_t^c b_t^c (1 + \tau_t) + y_t^T + p_t^N y_t^N + T_t$$

Euler equation with policy intervention:

$$u_T(t) = (1 + \tau_t)(1 + \theta_t)\beta \mathbb{E}_t \left[u_T(t+1)\tilde{R}_{t+1}^c \right] + \mu_t$$

- Equivalent effects on marginal cost of borrowing
-but capital controls also enhance debt capacity:

$$q^* \mathbb{E}_t(p_{t+1}^c) b_{t+1}^c \ge -\kappa (1+\theta) (y_t^T + p_t^N y_t^N)$$

Planner's problem under commitment

$$\max_{\{c_t^T, b_{t+1}^c\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t(c_t^T, y_t^N))$$
s.t.
$$q_t^* \mathbb{E}_t \left[p^c(c_{t+1}^T, y_{t+1}^N) \right] b_{t+1}^c + c_t^T = p^c(c_t^T, y_t^N) b_t^c + y_t^T$$

$$q_t^* \mathbb{E}_t \left[p^c(c_{t+1}^T, y_{t+1}^N) \right] b_{t+1}^c \ge -\kappa (y_t^T + p^N(c_t^T, y_t^N) y_t^N)$$

Euler eq. (μ_t =0) & externalities: __standard MP ext. (+)

$$u_T(t) = \beta \mathbb{E}_t \left[\left[u_T(t+1) + \mu_{t+1} \kappa y_{t+1}^N p^{N'}(t+1) \right] \tilde{R}_{t+1}^c \Psi(t+1) \right]$$

$$\Psi(t+1) \equiv \left(\frac{1-\psi(t)}{1-\psi(t+1)}\right)$$
 intermediation ext. > or < 1

$$\left[\frac{1}{1} \left(\lambda_t, p^c(t) \right) \right]$$

 $\psi(t) \equiv p^{c\prime}(t)b_t^c \left[1 - \left(\frac{\mathbb{E}_{t-1}[\lambda_t]}{\lambda_t} + \frac{\operatorname{Cov}_{t-1}\left(\lambda_t, p^c(t)\right)}{\lambda_t \mathbb{E}_{t-1}\lceil n^{c}(t)\rceil}\right)\right]^{-1}$ risk

Time inconsistency & optimal taxes

• At t, induce expectations of higher c_{t+1} to boost q_t^c , but suboptimal at t+1 due to higher debt repayment

$$\lambda_t = \frac{u_T(t) + \mu_t \kappa p^{N'}(t) y_t^N - p^{c'}(t) b_t^c \frac{q_{t-1}^*}{\beta} \left[\lambda_{t-1} - \mu_{t-1} \right]}{1 - p^{c'}(t) b_t^c}$$

- Allocations & prices independent of μ_t when $\mu_t > 0$.
- If μ_t =0 and $E_t[\mu_{t+1}]$ >0, an *effective* debt tax can be used to implement planner' solution:

$$\tau_{t} = \frac{\mathbb{E}_{t} \left[\left(u_{T}(t+1) + \mu_{t+1} \kappa y_{t+1}^{N} p^{N'}(t+1) \right) \tilde{R}_{t+1}^{c} \Psi(t+1) \right]}{\mathbb{E}_{t} \left[\tilde{R}_{t+1}^{c} u_{T}(t+1) \right]} - 1$$

- No case for capital controls (θ_t and τ_t are equivalent)

Conditionally efficient (time consistent) planner

Takes as given debt pricing function (ex-ante RIR function) of the unregulated DE

$$V(b^c, y^T, y^N) = \max_{\{b^{c\prime}, c^T\}} \left[u(c(c^T, y^N)) + \beta \mathbb{E}_{(y^{T\prime}, y^{N\prime}) | (y^T, y^N)} \left[V(b^{c\prime}, y^{T\prime}, y^{N\prime}) \right] \right]$$

s.t.

$$q^{\text{DE}}(b^{c}, y^{T}, y^{N}) p^{c}(c^{T}, y^{N}) b^{c\prime} + c^{T} = p^{c}(c^{T}, y^{N}) b^{c} + y^{T}$$

$$q^{\text{DE}}(b^{c}, y^{T}, y^{N}) p^{c}(c^{T}, y^{N}) b^{c\prime} \ge -\kappa (y^{T} + p^{N}(c^{T}, y^{N}) y^{N})$$

Planner's Euler equation (μ_t =0)

$$u_T(t) = \beta \mathbb{E}_t \Bigg[\Big[u_T(t+1) + \underbrace{\mu_{t+1} \kappa y_{t+1}^N p^{N\prime}(t+1)}_{\text{intermediation ext.}} \hat{R}_{t+1}^c \hat{\Psi}(t+1) \Omega(t+1) \Bigg]$$
 intermediation ext.

$$\hat{\Psi}(t+1) \equiv \left(\frac{1-\hat{\psi}(t)}{1-\hat{\psi}(t+1)}\right) > \text{or } < 1$$

$$\hat{\psi}(t) \equiv p^{c\prime}(t) \left[b_t^c - q^{\text{DE}}(t) b_{t+1}^c \left(1 - \frac{\mu_t}{\lambda_t} \right) \right]$$

$$\Omega(t+1) \equiv \left(1 - \left(1 - \frac{\mu_{t+1}}{\lambda_{t+1}}\right) q^{DE'}(t+1)b_{t+2}^c\right) < 1$$

Optimal policies

Effective debt tax (or subsidy):

$$\tau_t^{ef} = \frac{\mathbb{E}_t \left[\left(u_T(t+1) + \mu_{t+1} \kappa y_{t+1}^N p^{N'}(t+1) \right) \tilde{R}_{t+1}^c \hat{\Psi}(t+1) \Omega(t+1) \right]}{\mathbb{E}_t \left[\tilde{R}_{t+1}^c u_T(t+1) \right]} - 1$$

 Capital controls (tax or subsidy depending on expected RER appreciation relative to DE):

$$\theta_t = \frac{q_t^*}{q^{\text{DE}}(t)} \frac{\mathbb{E}_t[p^c(t+1)]}{p^c(t)} - 1$$

Domestic debt tax is the one given by:

$$(1 + \tau_t^{ef}) \equiv (1 + \tau_t)(1 + \theta_t)$$

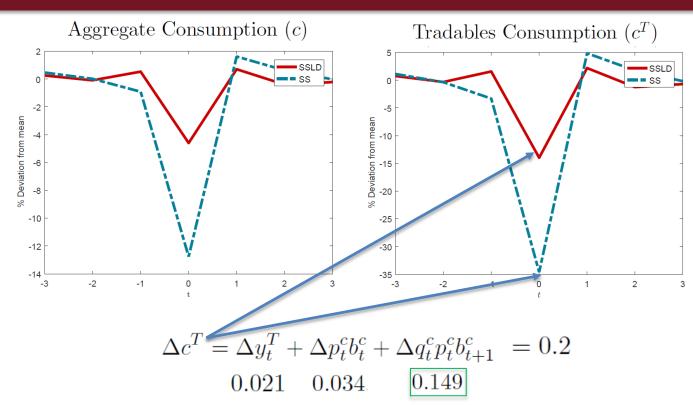
Calibration (Bianchi, 2011)

Parameter	Value		
γ	2		
η	0.205		
ω	0.31		
β	0.91		
q^*	0.96		
$ ho_{y^T}$	0.54		
σ_{y^T}	0.059		
y^N	1.00		
κ	0.32		

SSLD-SS comparison

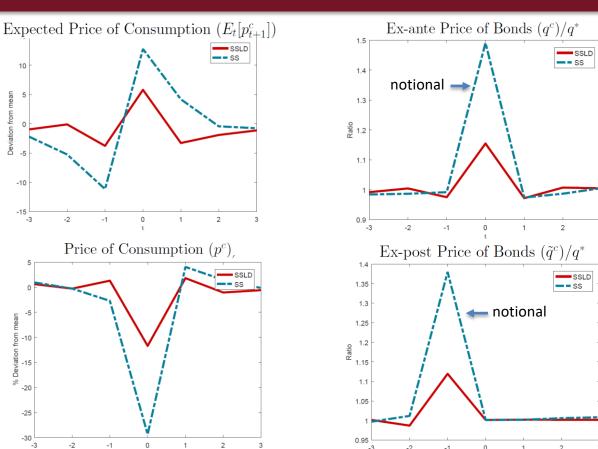
- 1. Strong risk-taking incentive, equivalent on average to 46 bpts. cut in R* (4% to 3.54%)
- 2. SSLD economy sustains higher debt (29.4% v. 27.2% of GDP on average)
- 3. Sudden Stops are less frequent (3.8% v. 4.8%), milder, and reached with higher income levels
- 4. Welfare is 0.26% higher (liability dollarization is desirable!), due to milder, less freq. crises
- 5. Milder crises largely due to fall in ex-ante RIRs (also higher income & lower ex-post RIR), even though CA reversal is about the same

Sudden Stops in consumption: SS v. SSLD



3/4ths of the consumption gain are due to ex-ante RIR effect!

Sudden Stops in prices: SS v. SSLD



Comparing SS, SSLD and SP

Long-run Moments	(1)	(2)	(3)	
	SS	SSLD	SSLD - SP	
Average $(p^cb^c/Y)\%$	-27.16	-29.41	-22.57	
Average TB/Y Ratio	1.22	1.12	0.80	
Welfare $gain^{1}\%$	n/a	0.26	0.54	
Prob. of Sudden Stops $^{2}\%$	4.76	3.83	0.00	
$\text{Prob}(\mu_t > 0) \%$	9.30	35.38	22.96	
Prob of MP tax region $\%$	n/a	n/a	49.7	
Median Debt Tax Rate τ %	n/a	n/a	5.79	
Median Capital Control Rate θ %	n/a	n/a	-12.78	
Average c	0.989	0.989	1.024	
Average fall in c in Sudden $Stops^3$	- 12.73	-4.60	n/a	

Simple policy rules

- 1. Constant taxes: $\tau_t = \tau$ $\theta_t = \theta$
- 2. Debt-tax Taylor Rule (credit targeting):

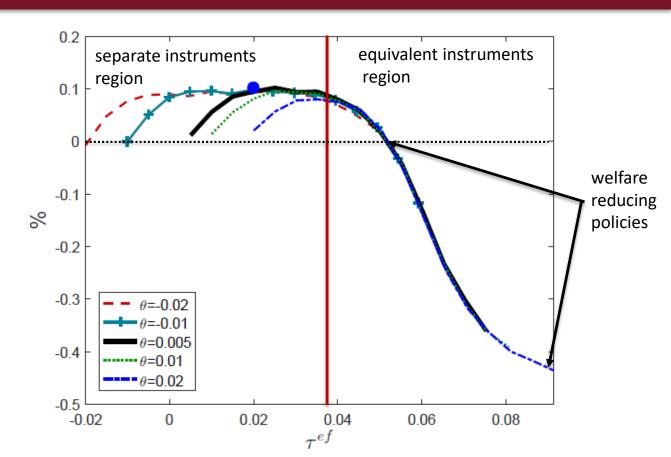
$$\tau_t = \max \left\{ (1 + \tau^*) \cdot \left(\frac{b_t^c}{\overline{b}^c} \right)^{\phi_T} - 1, 0 \right\}$$

3. Capital-controls Taylor Rule (RER targeting):

$$\theta_t = (1 + \theta^*) \cdot \left(\frac{p_t^c}{\bar{p}^c}\right)^{\phi_C} - 1$$

• All three optimized to find largest welfare gain

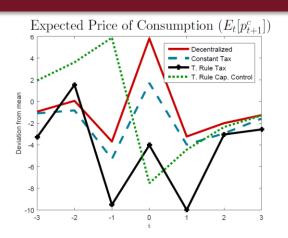
Welfare with fixed taxes

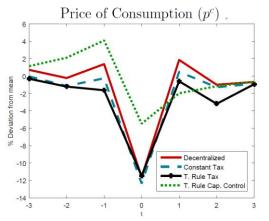


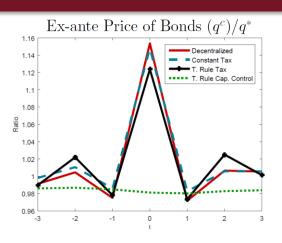
Effectiveness of simple rules

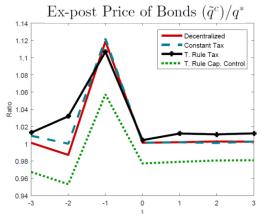
Long-run Moments ¹	(1)	(2)	(3)	(4)	(5)
	DE	CT	TRT	TRCC	SP
Average (P^cb^c/Y) %	-29.41	-29.07	-28.18	-30.49	-22.57
Welfare $Gain^2\%$	n/a	0.10	0.12	0.14	0.54
Prob. of Sudden Stops $^3\%$	3.83	3.23	2.76	3.55	0.00
$\operatorname{Prob}(\mu_t > 0) \%$	35.38	31.84	7.15	71.08	22.87
Median Debt Tax Rate τ %	n/a	2.00	3.59	2.00	5.79
Median Capital Control Rate θ %	n/a	0.50	0.50	1.73	-12.78
Average c	0.989	0.989	0.990	0.989	1.024
Average change of c in Sudden Stops ⁴ %	-4.60	-4.87	-4.48	-2.06	n/a

Sudden Stops in prices with simple rules









Conclusions

- LD alters significantly the positive & normative predictions of Sudden Stops models
 - 1. Adds intermediation externality via ex- and ex-post RIR fluctuations, and risk-taking incentive
 - 2. Time-inc. under commitment, no role for capital controls.
 - 3. Time-consistent regulator uses both domestic debt taxes and capital controls
 - 4. Higher debt & welfare, less frequent & weaker crises
 - 5. Optimal policy very effective but complex
 - 6. Simple rules are less effective, can reduce welfare, tend to tax debt more than inflows (except during crises)
- Future work to introduce banking frictions