The economics and politics of revoking NAFTA*

Barthélémy Bonadio
University of Michigan

Andrei A. Levchenko
University of Michigan
NBER and CEPR

October 1, 2018

Abstract

We provide a quantitative assessment of both the aggregate and the distributional effects of revoking NAFTA, using a multi-country, multi-sector, multi-factor model of world production and trade with global input-output linkages. Revoking NAFTA would reduce US welfare by about 0.2%, and Canadian and Mexican welfare by about 2%. The distributional impacts of revoking NAFTA across workers in different sectors are an order of magnitude larger in all three countries, ranging from -2.7 to 2.26% in the United States. We combine the quantitative results with information on the geographic distribution of sectoral employment, and compute average real wage changes in each US congressional district, Mexican state, and Canadian province. We then examine the political correlates of the economic effects. Congressional district-level real wage changes are negatively correlated with the Trump vote share in 2016: districts that voted more for Trump will on average experience greater real wage reductions if NAFTA is revoked.

Keywords: NAFTA, quantitative trade models, distributional effects, protectionism, trade policy

JEL Codes: F11, F13, F16, F62, J62, R13

[^0]
1 Introduction

With the onset of the global financial crisis, the longstanding downward trend in tariffs and other barriers to trade has come to a halt. Recent political events such as the election of the Trump administration in the US and the British vote to leave the European Union indicate an acute danger of rising protectionism and renationalisation of production and consumption. International trade has become salient in voters' minds and some parties and politicians profess strong views on the benefits and costs of particular trade policies. However, in a highly interconnected world economy with supply chains that cross country borders, who gains and who loses from trade policies is far from transparent.

Against this backdrop, this paper studies the distributional impacts of one prominent proposed protectionist measure - revoking NAFTA - in the global network of inputoutput trade. To examine the general equilibrium effects of this policy, we combine the multi-sector, multi-country, multi-factor general equilibrium Ricardian trade model (e.g. Eaton and Kortum, 2002; Caliendo and Parro, 2015; Levchenko and Zhang, 2016) with a specific-factors model that generates distributional effects of trade across sectors (Jones, 1971; Mussa, 1974; Levchenko and Zhang, 2013; Galle et al., 2017). We calibrate the model to the global matrix of intermediate and final goods trade from the 2016 edition of the World Input-Output Database (WIOD) and WIOD's Socioeconomic Accounts (Timmer et al., 2015). We then simulate a scenario in which NAFTA is dismantled. In particular, this counterfactual entails a rise in tariffs from the current NAFTA-negotiated ones to the Most-Favored Nation (MFN) level, as well as an increase in non-tariff barriers in both goods and service sectors estimated by Felbermayr et al. (2017).

We first assess the economic impact of this policy at the level of US congressional districts, Canadian provinces, and Mexican states. To do so, we combine the sector-country-specific real wage changes resulting from our general equilibrium model with information on employment shares in those geographical units. We then analyze the political dimension of this policy by correlating the economic outcomes with recent voting patterns. Since the threat to revoke NAFTA comes from the United States, we focus on this country and examine in particular the Trump vote shares in the 2016 election. This exercise sheds light on whether districts that voted for the arguably most protectionist candidate stand to benefit or lose disproportionately from this particular potential trade policy.

Our results can be summarized as follows. Following a revocation of NAFTA, the total welfare change is -0.22% for the United States, -1.8% for Mexico, and -2.2% for Canada. These aggregate numbers are an order of magnitude smaller than the distributional effects
across sectors. Sectoral real wage changes range from -2.70% to 2.26% for the US, from -16.76% to 9.46% for Mexico, and from -13.90% to 1.74% for Canada. Because sectoral employment is unevenly distributed across geographic locations, there are considerable distributional consequences across space as well. In the United States, average wage changes range from -0.41% in Ohio's 4 th district to 0.08% in Texas' 11th district, with a cross-district standard deviation of 0.04%. Average wages changes range from -3.34% to -1.34% across Canadian provinces and from -4.08% to -0.85% across Mexican states. Thus, both the aggregate welfare changes, and the extent of distributional impacts are significantly greater in Canada and Mexico in percentage terms.

Turning to the relationship with political outcomes, we find that if anything there is a negative correlation between the real wage change in a congressional district and the Trump vote share. Though dismantling or renegotiating NAFTA was a prominent pillar of the Trump presidential campaign, Trump-voting districts would experience systematically greater wage decreases if NAFTA disappeared. The exception to this empirical regularity are congressional districts with a large share of Mining and quarrying in employment, such as the Texas 11th congressional district, or the state of Wyoming.

To better understand this somewhat surprising pattern, we construct three simple, heuristic measures of trade exposure to NAFTA at the US congressional district level. The first is a measure of import exposure to the NAFTA partner countries, defined as the employment share-weighted average of sectoral imports from NAFTA partners in total US absorption. Intuitively, import exposure to NAFTA partners is high in a congressional district if it has high employment shares in sectors with greater import competition from those countries. All else equal, we should expect wages to rise the most in locations that in the current regime compete most closely with Canada and Mexico. The second is an export orientation measure, which is the employment share-weighted average of sectoral exports to NAFTA partners in total US output. Intuitively, we should expect locations with higher employment shares in NAFTA-export-oriented industries to lose disproportionately from NAFTA revocation. Finally, the third measure is NAFTA imported input intensity, defined as the employment-weighted share of spending on NAFTA inputs in total input spending. We should expect congressional districts that rely on NAFTA inputs to experience relatively larger wage decreases when NAFTA is revoked, although this prediction is contingent on the relevant substitution elasticities.

Taken individually, the bilateral relationships between all three heuristics and modelimplied wage changes are negative and statistically significant. This is intuitive for two measures - export orientation and imported input intensity - but counterintuitive for import exposure, as it implies that congressional districts suffering the most from direct
import competition actually see larger real wage reductions when protection increases following a dismantling of NAFTA.

At the same time, the statistical association between all three of these heuristics and the Trump vote share is positive and significant. This is intuitive for the import exposure measure - locations suffering the most from import competition voted more for Trump - but less so for the other two measures, as locations exporting to NAFTA or sourcing inputs from NAFTA should foresee wage decreases if NAFTA is done away with.

The apparent mystery is resolved by the fact that the correlation between the three heuristics is extremely high: the export orientation has a 0.92 correlation with import exposure, and a 0.86 correlation with imported input intensity. Less surprisingly, imported input intensity has a 0.95 correlation with import exposure. Thus, the picture that emerges from this exercise is first and foremost one of differences across locations in the overall level of integration with NAFTA countries. Places that suffer the most from NAFTA import competition are also overwhelmingly those that export to NAFTA and use NAFTA intermediates.

It is thus not surprising that the locations overall more open to NAFTA trade experience larger net welfare losses: effectively, a revocation of NAFTA represents a relatively greater reduction in trade openness for those locations. We do show, however, that these locations are also the ones that voted systematically more for Trump. This exercise underscores the need for a model-based quantitative assessment that takes into account multiple import and export linkages and general equilibrium adjustments. Heuristic measures of import competition that have been used in other contexts (e.g. Autor et al., 2013, and the large literature that followed) would be misleading as to which locations would stand to lose the most from NAFTA revocation, and how the distributional effects of NAFTA correlate with Trump vote. Indeed, while the bivariate relationships between all three of the heuristic measures and real wage changes or Trump vote all have the same sign, the conditional relationships all have the expected signs: when controlling for export orientation and imported input intensity, the locations with greater NAFTA import exposure experience relative wage gains from NAFTA rollback. Similarly, controlling for import exposure, districts with greater export orientation actually tended to vote less for Trump.

Our work follows the tradition of quantitative assessments of trade policy, going back to the first-generation CGE literature (see, among many others, Deardorff and Stern, 1990; Harrison et al., 1997; Hertel, ed, 1997). More recent contributions extend the Eaton and Kortum (2002) framework to study the welfare effects of NAFTA (e.g. Caliendo and Parro, 2015), the effect of the UK leaving the European Union (Dhingra et al., 2017), or greater potential US protectionism (Felbermayr et al., 2017). Our two main contributions are (i) to
bring to the fore the distributional aspects of trade policy, and (ii) to systematically relate those distributional aspects to the variation in political support for the most protectionist US chief executive in decades.

The rest of the paper is organized as follows. Section 2 lays out the quantitative framework used in the analysis, and Section 3 describes the data. Section 4 presents the real wage and income changes following the revocation of NAFTA, and Section 5 relates those to voting patterns in the US. Section 6 presents some extensions and robustness checks, and Section 7 concludes. Details of data, calibration, and model solution are collected in the Appendix.

2 Quantitative framework

The world is composed of N countries denoted by m, n, and k, and J sectors denoted by i and j. Each sector produces a continuum of goods. There are two types factors of production: labor and capital (K). Labor is further decomposed into high- $\left(L_{H}\right)$, medium$\left(L_{M}\right)$, and low-skill $\left(L_{L}\right)$ labor. Capital and labor are perfectly mobile across goods within a sector, but immobile across sectors (Jones, 1971; Mussa, 1974). This assumption means that the results should be interpreted as the short-run effects of the policy experiments we simulate. ${ }^{1}$ Micro evidence shows that following trade shocks, worker mobility across sectors is quite limited (Artuç et al., 2010; Dix-Carneiro, 2014), and thus our model provides a good approximation to the factor adjustment in the short run. Country n, sector j are endowed with $L_{H, j n}$ units of high-skilled labor, $L_{M, j n}$ units of medium-skilled labor, $L_{L, j n}$ units of low-skilled labor, and $K_{j n}$ units of capital.

Preferences and final demand. Utility is identical and homothetic across agents in the economy. Individual ι maximizes utility

$$
U_{n}(\iota)=\prod_{j=1}^{J} Y_{j n}(\iota)^{\xi_{j j n}},
$$

where the $Y_{j n}(\iota)$ is ι 's consumption of the composite good in sector j, subject to the budget constraint:

$$
\sum_{j=1}^{J} p_{j n} Y_{j n}(\iota)=I(\iota)
$$

[^1]where $p_{j n}$ is the price of sector j composite good, and $I(\iota)$ is ι 's income. Income in this economy comes from labor and capital earnings, tariff revenue, and a trade deficit in the form of a transfer to n from the rest of the world (which will be negative in countries with a trade surplus):
$$
I_{n} \equiv \sum_{\iota} I_{n}(\iota)=\sum_{j=1}^{J} w_{H, j n} L_{H, j n}+\sum_{j=1}^{J} w_{M, j n} L_{M, j n}+\sum_{j=1}^{J} w_{L, j n} L_{L, j n}+\sum_{j=1}^{J} r_{j n} K_{j n}+T_{n}+D_{n}
$$
where $w_{s, j n}$ and $r_{j n}$ are the wage rate for s-skilled labor and the return to capital in sector j in country n, T_{n} total tariff revenue in country n, and D_{n} is the trade deficit. Since utility is Cobb-Douglas, this demand system admits a representative consumer, and thus final consumption spending in each sector is a constant fraction of aggregate income. Denote the economywide final consumption on sector j goods in country n by $Y_{j n}$. Then:
$$
p_{j n} Y_{j n}=\xi_{j n} I_{n} .
$$

The corresponding consumption price index in country n is:

$$
\begin{equation*}
P_{n}=\prod_{j=1}^{J}\left(\frac{p_{j n}}{\tilde{\zeta}_{j n}}\right)^{\tilde{\zeta}_{j n}} . \tag{1}
\end{equation*}
$$

In the quantitative implementation below, agents ι will be differentiated by which sectoral factor endowments they own, and thus we will be computing income changes for medium-skilled workers in the apparel sector, for example.

Technology and market structure. Output in each sector j is produced competitively using a CES production function that aggregates a continuum of varieties $q \in[0,1]$ unique to each sector:

$$
Q_{j n}=\left[\int_{0}^{1} Q_{j n}(q)^{\frac{\epsilon-1}{\epsilon}} d q\right]^{\frac{\epsilon}{\epsilon-1}}
$$

where ϵ denotes the elasticity of substitution across varieties $q, Q_{j n}$ is the total output of sector j in country n, and $Q_{j n}(q)$ is the amount of variety q that is used in production in sector j and country n. The price of sector j 's output is given by:

$$
p_{j n}=\left[\int_{0}^{1} p_{j n}(q)^{1-\epsilon} d q\right]^{\frac{1}{1-\epsilon}}
$$

The production function of a particular sectoral variety q is:
$y_{j n}(q)=z_{j n}(q)\left(l_{H, j n}(q)^{\alpha_{H, j n}} l_{M, j n}(q)^{\alpha_{M, j n}} l_{L, j n}(q)^{\alpha_{L, j n}} k_{j n}(q)^{1-\alpha_{H, j n}-\alpha_{M, j n}-\alpha_{L, j n}}\right)^{\beta_{j n}}\left(\prod_{i=1}^{J} m_{i j n}(q)^{\gamma_{i j n}}\right)^{1-\beta_{j n}}$,
where $z_{j n}(q)$ denotes variety-specific productivity, $k_{j n}(q)$ and $l_{s, j n}(q)$ denote inputs of capital and s-skilled labor, and $m_{i j n}$ denotes the intermediate input from sector i used in production sector- j goods in country n. The value-added-based labor intensity is given by $\alpha_{s, j n}$ for skill type s, while the share of value added in total output is given by $\beta_{j n}$. Both of these vary by sector and country. The weights on inputs from other sectors, $\gamma_{i j n}$, vary by output industry j as well as input industry i and by country n.

Productivity $z_{j n}(q)$ for each $q \in[0,1]$ in each sector j is equally available to all agents in country n, and product and factor markets are perfectly competitive. Following Eaton and Kortum (2002, henceforth EK), the productivity draw $z_{j n}(q)$ is random and comes from the Fréchet distribution with the cumulative distribution function

$$
F_{j n}(z)=e^{-A_{j n} z^{2}}
$$

Define the cost of an "input bundle" faced by sector j producers in country n :

$$
\begin{equation*}
b_{j n}=\left[\left(w_{H, j n}\right)^{\alpha_{H, j n}}\left(w_{M, j n}\right)^{\alpha_{M, j n}}\left(w_{L, j n}\right)^{\alpha_{L, j n}}\left(r_{j n}\right)^{1-\alpha_{H, j n}-\alpha_{M, j n}-\alpha_{L, j n}}\right]^{\beta_{j n}}\left[\prod_{i=1}^{J}\left(p_{i n}\right)^{\gamma_{i j n}}\right]^{1-\beta_{j n}} . \tag{2}
\end{equation*}
$$

The production of a unit of good q in sector j in country n requires $z_{j n}^{-1}(q)$ input bundles, and thus the cost of producing one unit of $\operatorname{good} q$ is $b_{j n} / z_{j n}(q)$. International trade is subject to iceberg costs: in order for one unit of good q produced in sector j to arrive at country n from country $m, d_{j, m n}>1$ units of the good must be shipped (in describing bilateral flows, we follow the convention that the first subscript denotes source, the second destination). We normalize $d_{j, n n}=1$ for each country n in each sector j. Note that the trade costs will vary by destination pair and by sector, and in general will not be symmetric: $d_{j, n m}$ need not equal $d_{j, m n}$.

In addition to non-policy trade frictions $d_{j, m n}$, there are two policy barriers to trade: an ad valorem tariff $\tau_{j, m n}$ that is paid at the border, and an ad valorem non-tariff barrier $\eta_{j, m n}>1$, that distorts trade but does not result in any government revenue. The total trade cost is thus given by $\kappa_{j, m n}=d_{j, m n} \eta_{j, m n}\left(1+\tau_{j, m n}\right)$.

Goods markets are competitive, and thus prices equal marginal costs. The price at
which country m can supply tradable good q in sector j to country n is equal to:

$$
p_{j, m n}(q)=\frac{b_{j m}}{z_{j m}(q)} \kappa_{j, m n}
$$

Buyers of each good q in sector j in country n will select to buy from the cheapest source country. Thus, the price actually paid for this good in country n will be:

$$
p_{j n}(q)=\min _{m=1, \ldots, N}\left\{p_{j, m n}(q)\right\} .
$$

Following the standard EK approach, define the "multilateral resistance" term

$$
\Phi_{j n}=\sum_{m=1}^{N} A_{j m}\left(b_{j m} \kappa_{j, m n}\right)^{-\theta}
$$

This value summarizes, for country n, the access to production technologies in sector j. Its value will be higher if in sector j, country n 's trading partners have high productivity $\left(A_{j m}\right)$ or low cost $\left(b_{j m}\right)$. It will also be higher if the trade costs that country n faces in this sector are low. Standard steps lead to the familiar result that the probability of importing good q from country $m, \pi_{j, m n}$ is equal to the share of total spending on goods coming from country $m, X_{j, m n} / X_{j n}$, and is given by:

$$
\begin{equation*}
\frac{X_{j, m n}}{X_{j n}}=\pi_{j, m n}=\frac{A_{j m}\left(b_{j m} \kappa_{j, m n}\right)^{-\theta}}{\Phi_{j n}} \tag{3}
\end{equation*}
$$

In addition, the price of good j aggregate in country n is simply

$$
\begin{equation*}
p_{j n}=\Gamma\left(\Phi_{j n}\right)^{-\frac{1}{\theta}} \tag{4}
\end{equation*}
$$

where $\Gamma=\left[\Gamma\left(\frac{\theta+1-\epsilon}{\theta}\right)\right]^{\frac{1}{1-\epsilon}}$, with Γ denoting the Gamma function.

Equilibrium and market clearing. A competitive equilibrium in this economy is a set of goods prices $\left\{p_{j n}\right\}_{n=1, \ldots, N^{\prime}}^{j=1, \ldots, J}$, factor prices $\left\{w_{s, j n}\right\}_{n=1, \ldots, N}^{j=1, \ldots, J}$ for $s=H, M, L$ and $\left\{r_{j n}\right\}_{n=1, \ldots, N^{\prime}}^{j=1, \ldots, J}$ and resource allocations $\left\{Y_{j n}\right\}_{n=1, \ldots, N^{\prime}}^{j=1, \ldots, J}\left\{Q_{j n}\right\}_{n=1, \ldots, N^{\prime}}^{j=1, \ldots, J}\left\{\pi_{j, m n}\right\}_{n, m=1, \ldots, N^{\prime}}^{j=1, \ldots, J}$, such that (i) consumers maximize utility; (ii) firms maximize profits; and (iii) all markets clear.

The market clearing condition for sector j aggregate in country n is given by

$$
\begin{equation*}
p_{j n} Q_{j n}=p_{j n} Y_{j n}+\sum_{i=1}^{J}\left(1-\beta_{i n}\right) \gamma_{j i n}\left(\sum_{k=1}^{N} \frac{\pi_{i, n k} p_{i k} Q_{i k}}{1+\tau_{i, n k}}\right) . \tag{5}
\end{equation*}
$$

Total expenditure in sector j, country $n, p_{j n} Q_{j n}$, is the sum of domestic final expenditure
$p_{j n} Y_{j n}$ and expenditure on sector j goods as intermediate input in all domestic sectors i : $\sum_{i=1}^{J}\left(1-\beta_{i n}\right) \gamma_{j i n}\left(\sum_{k=1}^{N} \frac{\pi_{i, n k} p_{i k} Q_{i k}}{1+\tau_{i, n k}}\right)$. In turn, final consumption is given by:

$$
\begin{equation*}
p_{j n} Y_{j n}=\xi_{j n}\left(\sum_{s=\{H, M, L\}}\left(\sum_{i=1}^{J} w_{s, i n} L_{s, i n}\right)+\sum_{i=1}^{J} r_{i n} K_{i n}+\sum_{m \neq n} \sum_{i=1}^{J} \frac{\tau_{i, m n} \pi_{i, m n} p_{i n} Q_{i n}}{1+\tau_{i, m n}}+D_{n}\right) \tag{6}
\end{equation*}
$$

Finally, since all factors of production are immobile across sectors, sectoral skill-specific $w_{s, j n}$ and sectoral $r_{j n}$ adjust to clear the factor markets:

$$
\begin{equation*}
\sum_{m=1}^{N} \frac{\pi_{j, n m} p_{j m} Q_{j m}}{1+\tau_{j, n m}}=\frac{w_{s, j n} L_{s, j n}}{\alpha_{s, j n} \beta_{j n}}=\frac{r_{j n} K_{j n}}{\left(1-\sum_{s} \alpha_{s, j n}\right) \beta_{j n}} . \tag{7}
\end{equation*}
$$

Formulation in changes. Following Dekle et al. (2008), we express the model in terms of gross changes relative to the baseline equilibrium and the baseline equilibrium observables. For any baseline value of a variable x, denote by a prime its counterfactual value following some change in parameters, and by a "hat" the gross change in a variable between a baseline level and a counterfactual: $\widehat{x} \equiv x^{\prime} / x$. The shock we will consider is an increase in tariffs $\tau_{j, m n}$ and non-tariff barriers $\eta_{j, m n}$ between US, Canada, and Mexico following the revocation of NATFA. In changes, (6) becomes:
$\widehat{p}_{j n} \widehat{Y}_{j n}=\sum_{s}\left(\sum_{i=1}^{J} \widehat{w}_{s, i n} S L_{s, i n}\right)+\sum_{i=1}^{J} \widehat{r}_{i n} S K_{i n}+\sum_{m \neq n} \sum_{i=1}^{J} \frac{\tau_{i, m n}^{\prime} \widehat{\pi}_{i, m n} \widehat{p}_{i n} \widehat{Q}_{i n}}{1+\tau_{i, m n}^{\prime}} \frac{\pi_{i, m n} p_{i n} Q_{i n}}{I_{n}}+\widehat{D}_{n} S D Q()$
where $S L_{s, i n}, S K_{i n}$, and $S D_{n}$ are the initial shares of s-skill labor income in sector i, capital income in sector i, and the trade deficit, respectively. The market clearing condition (5) becomes:

$$
\begin{equation*}
\widehat{p}_{j n} \widehat{Q}_{j n} p_{j n} Q_{j n}=\widehat{p}_{j n} \widehat{Y}_{j n} p_{j n} Y_{j n}+\sum_{i=1}^{J}\left(1-\beta_{i n}\right) \gamma_{j i n}\left(\sum_{k=1}^{N} \frac{\widehat{\pi}_{i, n k} \widehat{p}_{i k} \widehat{Q}_{i k} \pi_{i, n k} p_{i k} Q_{i k}}{1+\tau_{i, n k}^{\prime}}\right) . \tag{9}
\end{equation*}
$$

The factor market clearing conditions become:

$$
\begin{equation*}
\widehat{w}_{s, j n}=\widehat{r}_{j n}=\frac{\sum_{m=1}^{N} \frac{\widehat{\pi}_{j, n m} \widehat{p}_{j m} \widehat{Q}_{j m} \pi_{j, n m} p_{j m} Q_{j m}}{1+\tau_{j, n m}^{\prime}}}{\sum_{m=1}^{N} \frac{\pi_{j, n m} p_{j m} Q_{j m}}{1+\tau_{j, n m}}} \tag{10}
\end{equation*}
$$

The trade shares in changes are

$$
\begin{equation*}
\widehat{\pi}_{j, m n}=\frac{\left(\widehat{b}_{j m} \widehat{\kappa}_{j, m n}\right)^{-\theta}}{\sum_{k=1}^{N} \pi_{j, k n}\left(\widehat{b}_{j k} \widehat{\kappa}_{j, k n}\right)^{-\theta}}, \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{b}_{j m}=\left[\left(\widehat{w}_{H, j m}\right)^{\alpha_{H, j m}}\left(\widehat{w}_{M, j m}\right)^{\alpha_{M, j m}}\left(\widehat{w}_{L, j m}\right)^{\alpha_{L, j m}}\left(\widehat{r}_{j m}\right)^{1-\sum_{s} \alpha_{s, j m}}\right]^{\beta_{j m}}\left[\prod_{i=1}^{J}\left(\widehat{p}_{i m}\right)^{\gamma_{i j m}}\right]^{1-\beta_{j m}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{\kappa}_{j, m n}=d_{j, m n} \widehat{\eta}_{j, m n} \frac{\left(1+\tau_{j, m n}^{\prime}\right)}{\left(1+\tau_{j, m n}\right)} . \tag{13}
\end{equation*}
$$

Finally, standard steps lead to the counterfactual price indices:

$$
\begin{equation*}
\widehat{p}_{j n}=\left(\sum_{m=1}^{N} \pi_{j, m n}\left(\widehat{b}_{j m} \widehat{\kappa}_{j, m n}\right)^{-\theta}\right)^{-\frac{1}{\theta}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{P}_{n}=\prod_{j=1}^{J} \widehat{p}_{j n}^{\xi j n} . \tag{15}
\end{equation*}
$$

Equations (8)-(15) are solved for all the price, wage, and quantity changes between the baseline equilibrium and the counterfactual. The model is solved using the algorithm described in Appendix A.

3 Data

This section describes the sources of our trade, input-output, trade policy, and voting data.

The 2016 release of the World Input-Output Database (WIOD) is our main data source. It contains data on trade flows, intermediate input usage, and final consumption at the sectoral level. The socio-economic accounts compiled by the WIOD also contain data on labor and capital share in value added. Labor is broken down into three skill levels. A low-skilled worker is defined by the WIOD as one with at most some secondary education. A medium-skilled worker has a complete secondary education. A high-skilled worker has some tertiary education or more. We use the latest year available, which is
2014. ${ }^{2}$ The WIOD and its construction are described in detail in Timmer et al. (2015). We combine some sectors with too many zeros, and add Turkey, Russia, Luxembourg, and Malta to the composite "Rest of the World" region. The resulting dataset consists of 40 countries and 38 sectors. Tables A1 and A2 in the Appendix provide a list of countries and sectors.

To get a sense of the importance of input and final goods trade among the NAFTA countries, Table 1 reports aggregate intermediate and final spending shares according to WIOD. The left panel reports the share of spending on intermediates from the country in the row of the table in the total intermediate spending in the country in the column. Thus, the US sources 89.7% of all intermediates it uses from itself, 1.8% from Canada, and 1% from Mexico. The importance of the US for Canada and Mexico is predictably larger. The US supplies 12.1% of all intermediates used in Canada, and 15.1% of intermediates used in Mexico. The right panel presents the corresponding shares in final consumption spending. The importance of NAFTA countries in each other's final goods spending is lower, with Canada and Mexico supplying 0.6% and 0.8% of US final consumption spending, and the US supplying 6.2% and 3.5% of final consumption of Canada and Mexico, respectively.

Table 1: NAFTA market shares

| | Intermediate spending | | | | Final consumption spending | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Canada | Mexico | United States | | Canada | Mexico | United States |
| | .783 | .007 | .018 | | .876 | .002 | .006 |
| Canada | .006 | .716 | .010 | | .006 | .914 | .008 |
| Mexico | .121 | .151 | .897 | | .062 | .035 | .943 |

Notes: This table reports the share of input spending (left panel) and final spending (right panel) in the column country coming from the row country. The columns do not add up to 1 because of imports from non-NAFTA countries.

Location-specific employment data come from the U.S. Census Bureau (year 2015), Statistics Canada (year 2015) and the Instituto Nacional de Estadistica y Geografia (year 2014). These are provided at the sectoral level following the NAICS classification. We convert these to ISIC 4 using the correspondence table from the Census Bureau. We do not have breakdowns of location-specific employment by skill level. Employment shares by skill for the US at the county level come from the U.S. Census Bureau (2016). For the US, we convert county-level data to congressional district by using the Census Bureau's mapping. Finally, data on election results at the congressional district level have been

[^2]compiled by Daily Kos Elections.
At the national level, the sectors in which the bulk of US employment is currently found have at best weak direct connections to NAFTA countries. The left panel of Figure 1 plots US employment at the sector level against the share of intermediate spending sourced from the NAFTA countries. There is a broad negative relationship: the sectors with the greatest NAFTA input spending shares tend to not have much US employment. The right panel plots employment against the share of output exported to NAFTA countries. Here, there are essentially two groups of sectors: the group with a relatively high export intensity to NAFTA and low overall US employment, and sectors that export virtually nothing to NAFTA but have higher employment.

Figure 1: US Sectoral Employment, NAFTA Input Share and NAFTA Export Share

Notes: The left panel depicts the US sectoral employment against the share of total input spending in a sector that is sourced from Canada and Mexico. The right panel depicts the US sectoral employment against the share of total output exported to Canada and Mexico. The sector key is in Appendix Table A2.

We use the 2014 tariff data for Canada, Mexico and the US from the World Bank's WITS database. ${ }^{3}$ We set $\tau_{j, m n}$ to the current effectively applied tariff rate, and $\tau_{j, m n}^{\prime}$ to the Most Favored Nation (MFN) rate when m and n are NAFTA countries, and $\tau_{j, m n}=0$ if either m or n is not the one of the NAFTA countries. ${ }^{4}$ Estimates of non-tariff trade barrier (NTB) changes in case of rollback of NAFTA come from Felbermayr et al. (2017). Those authors fit a gravity model and infer non-tariff barriers from the deviation of actual trade volumes from trade volumes predicted based on observable gravity variables in each sector and country pair. According to this procedure, in a small number of sectors NTBs

[^3]will actually fall as a result of revoking NAFTA. Since this appears implausible, we set the NTB change to zero in instances where the regression model predicts them to fall if NAFTA is revoked.

Figure 2 presents the changes in tariffs and NTBs that we assume would occur if NAFTA were revoked, expressed in percentage points (Appendix Table A3 reports the precise numbers). Since we assume that Canada and Mexico would receive MFN treatment if NAFTA disappeared, the tariff changes that would actually occur are by and large in single digit percentage points. The inferred NTB changes are both larger on average, and more broad-based, affecting also a number of service sectors in which tariffs are zero. It is plausible that a revocation of NAFTA will be accompanied by a general deterioration of the relationship between the countries, and that the NTBs will rise in a wide range of sectors.

Figure 2: Assumed changes in US tariffs and NTB on Canada and Mexico if NAFTA is revoked

Notes: This figure reports the change in sectoral tariffs on Mexico and Canada, and the change in the NTBs imposed by the US on Mexico and Canada, if NAFTA is revoked, expressed in percentage points. "(M)" denotes a manufacturing sector.

At the same time, the NTB changes reported in Figure 2 are inferred from observed variation in trade flows, rather than measured directly. Direct measurement of NTBs is not feasible. To our knowledge, the only comprehensive NTB database is compiled by UNCTAD, and contains count measures of the number of NTBs in place by sector and country pair. We collected these data and compared the number of NTBs among the NAFTA countries with the number of NTBs that the NAFTA countries impose on nonNAFTA trading partners. It is indeed the case that the within-NAFTA number of NTBs is systematically lower than the number imposed by NAFTA countries on non-NAFTA economies. We computed the bilateral sectoral change in the number of NTBs within NAFTA if each NAFTA country went from the observed number of NTBs to the average that it imposes on the rest of the world. In this exercise, we assumed that after the lower NTBs due to NAFTA are phased out, each NAFTA country treats its NAFTA partners with the same level of NTBs that it imposes on the rest of the world, in each sector. The correlation between the implied change in the number of NTBs and the ad valorem NTB change from Felbermayr et al. (2017) in Figure 2 is 0.23 for the US-Mexico NTBs and 0.36 for the US-Canada NTBs. Given the significant caveats with simply using the number of NTBs as a measure of their severity, the positive correlation is reassuring that there is some informational content in the NTB values inferred from trade flows and used in the baseline.

Nonetheless, given the large amount of uncertainly surrounding the NTB numbers, throughout we report the results under two additional assumptions. First, we assume that the NTBs don't change following the dismantling of NAFTA, and only tariffs do. This is the most conservative treatment of NTBs, resulting in far smaller overall trade cost increases from dismantling NAFTA. The second alternative we implement is to jettison the sectoral variation in NTB changes, and simply apply a uniform increase in NTBs that is equal to the average change across sectors implied by the Felbermayr et al. (2017) numbers. This implies a 9.62% uniform increase in NTBs when NAFTA is revoked.

4 Quantitative results

4.1 Calibration

All parameters except the trade elasticity θ can be calibrated directly from the WIOD data. All numbers in the WIOD data are in basic prices and therefore ex-tariff. One cell in the the WIOD database is $M_{i j, m n}$, the exports from country m, sector i to country n, sector j, where j could be $j=C$ the final consumption. Denoting $M_{j, m n}=\sum_{i=1}^{J} M_{j i, m n}+M_{j C, m n}$
the total WIOD value of good j exported from m to n, we have that in terms of our model $M_{j, m n}=\frac{\pi_{j, m n} p_{j n} Q_{j n}}{1+\tau_{j, m n}}$.

The quantities needed to solve the model are:

$$
\begin{align*}
p_{j n} Q_{j n} & =\sum_{m=1}^{N}\left(1+\tau_{j, m n}\right) M_{j, m n} \tag{16}\\
\pi_{j, m n} & =\frac{\left(1+\tau_{j, m n}\right) M_{j, m n}}{p_{j n} Q_{j n}} \tag{17}\\
D_{n} & =\sum_{j=1}^{J} D_{j n} \text { where } D_{j n}=\sum_{m=1}^{J} M_{j, n m}-\sum_{m=1}^{J} M_{j, m n} \tag{18}\\
T_{n} & =\sum_{m=1}^{N} \sum_{j=1}^{J} \tau_{j, m n} M_{j, m n} \tag{19}\\
p_{j n} Y_{j n} & =\sum_{m=1}^{N}\left(1+\tau_{j, m n}\right) M_{j C, m n} \tag{20}
\end{align*}
$$

The production and utility parameters can be calibrated using the optimality conditions described above:

$$
\begin{align*}
\xi_{j n} & =\frac{\sum_{m=1}^{N}\left(1+\tau_{j, m n}\right) M_{j C, m n}}{\sum_{i=1}^{J} \sum_{m=1}^{N}\left(1+\tau_{i, m n}\right) M_{i C, m n}} \tag{21}\\
\beta_{j n} & =1-\frac{\sum_{m=1}^{N} \sum_{i=1}^{J}\left(1+\tau_{i, m n}\right) M_{i j, m n}}{\sum_{m=1}^{N} M_{j, n m}} \text { for } j \neq C \tag{22}\\
\gamma_{i j, n} & =\frac{\sum_{m=1}^{N}\left(1+\tau_{i, m n}\right) M_{i j, m n}}{\sum_{m=1}^{N} \sum_{j^{\prime}=1}^{J}\left(1+\tau_{j^{\prime}, m n}\right) M_{i j^{\prime}, m n}} \tag{23}\\
\alpha_{s, j n} & =\frac{\text { labor_revenue }_{s, j n}}{\text { value_added }_{j n}}, \tag{24}
\end{align*}
$$

where skill-specific labor revenue and value added come from the social and economic accounts of the WIOD.

In the baseline we set the trade elasticity $\theta=5$, a common value in the quantitative trade literature (e.g. Costinot and Rodríguez-Clare, 2014). Section 6.2 assesses the robustness of the results to alternative θ^{\prime} s.

4.2 Sectoral and aggregate effects

With immobile factors, the sectoral wage change for each skill level is identical (see equation 10). Figure 3 reports the change in the real wage for each sector following the full revocation of NAFTA. As discussed above, we present three scenarios for NTB changes: (i) baseline depicted in Figure 2; (ii) no NTB changes (tariff changes only), and (iii) uniform NTB changes.

The real wage change is simply the change in the sectoral wage divided by the consumption price index, expressed in net terms: $\widehat{w}_{s, j n} / \widehat{P}_{n}-1$. US sectors experience a range of wage changes from a 2.26% increase in the mining and quarrying sector to a 2.7% decline in the coke and petroleum sector. The large majority of sectors experience wage decreases, with 5 sectors, all in manufacturing, seeing reductions in excess of 1%. With unchanged NTBs, wage decreases are much smaller on average, as would be expected since this scenario involved much smaller trade cost increases. In the United States, overall the uniform NTB case is quite highly correlated with the baseline, with the notable difference for the outlier sectors, where the uniform NTB scenario implies changes smaller in absolute terms. In Canada and Mexico, the range of sectoral wage changes is much greater. Both Mexico and Canada have sectors that experience wage reductions in excess of 10%.

In all three countries, the employment-weighted average wage changes are negative for all three scenarios, as reported by the horizontal lines in Figure 3. The numbers are in the first column of Table 2. The average wage fall in the US is an order of magnitude smaller than in Mexico and Canada in all scenarios. However, when computing aggregate welfare changes, we must take into account changes in the capital income and tariff revenue. Proportional changes in capital income are the same as wage income in our framework. Adding tariff revenue, the second column of Table 2 reports the overall welfare changes. The US loses 0.22% from the dismantling of NAFTA in the baseline scenario. Canadian and Mexican losses are about ten times larger in proportional terms at around -2%. The numbers are quite similar under a uniform NTB change. When only tariffs change, the US is indifferent, whereas Canadian and Mexican welfare fall by 0.08% and 0.26% respectively.

Though proportional changes are smaller in the US, it bears the largest dollar losses from dismantling NAFTA, at about US $\$ 40$ billion, as reported in the last column. Canada is a close second at US $\$ 37$ billion, and Mexico at US $\$ 22$. Our exercise implies that relative price levels (real exchange rates) also move, with the US dollar appreciating by 2.4% against the Mexican peso, and by 1.3% against the Canadian dollar in real terms.

Figure 3: Sectoral wage changes in NAFTA countries due to full rollback of NAFTA United States

Canada

16
Notes: This Figure depicts sectoral real wage changes due to revocation of NAFTA. "(M)" denotes a manufacturing sector.

Table 2: Employment weighted average wage and total welfare changes

	Real wage change, $\%$	Total welfare change, $\%$	in bln. US\$		
	Tariff and NTB baseline				
Canada	-1.67	-2.18	-36.58		
Mexico	-1.78	-1.80	-21.99		
United States	-0.27	-0.22	-39.86		
	Tariff only				
Canada	-0.37	-0.08	-1.29		
Mexico	-0.98	-0.26	-3.11		
United States	-0.05	-0.00	-0.23		
	Tariff and uniform NTB				
Canada	-2.14	-2.05	-34.47		
Mexico	-3.09	-2.03	-24.74		
United States	-0.24	-0.22	-39.17		

Notes: This table reports the aggregate real wage changes and the total welfare changes, in percentage points and in billion US\$, for the NAFTA countries under the three NAFTA revocation scenarios.

4.3 Geographic distribution

We now move on to the geographic distribution of relative gains and losses. To this end, we aggregate county-level sectoral employment to obtain sectoral employment shares in each congressional district. Then, we construct the weighted average real wage change in a district by applying the sectoral wage changes to district-level sectoral employment shares. In Canada and Mexico, we use province- and state-level sectoral employment shares, respectively. Let c subscript locations, and let $\omega_{j c}$ be the share of sector j employment in total district c employment. The mean real wage change in location c is then

$$
\sum_{j} \omega_{j c}\left(\frac{\widehat{w}_{j n}}{\widehat{P}_{n}}-1\right)
$$

Figure 4 depicts the average real wage changes following the revocation of NAFTA, by geographical region. Darker shades denote larger wage reductions. The first distinctive feature of the figure is that the location-specific real wage changes are overwhelmingly negative throughout North America. Second, the systematically darker colors are outside of the United States: as reported above, wage reductions are greater in Canada and Mex-
ico. The figure highlights the pervasiveness of average wage reductions geographically in Canada and Mexico: though individual sectors sometimes experience wage increases, no region in Canada or Mexico sees real wage gains.

Figure 5 zooms in on the United States. In the Eastern portion of the country, there are two distinct darker bands in the upper Midwest and the South. The lightest hues (smallest wage decreases) are in mining areas of Texas, West Virginia, and Wyoming.

Figure 4: Real wage changes in NAFTA countries following revocation of NAFTA

Notes: This figure depicts the average wage changes by geographic region in North America.

5 Political correlates of the local economic impact

The quantitative assessment above establishes that the revocation of NAFTA has distributional consequences: real wage changes differ across sectors and geographic locations. This section analyzes the political dimension by correlating the geographic variation in real wage changes with recent voting outcomes. Since proposals to revoke NAFTA originate from the United States, we focus on this country.

Figure 5: Real wage changes in US congressional districts following revocation of NAFTA

Notes: This figure depicts the average wage changes by congressional district in the United States.

5.1 Correlation with Trump vote

Figure 6 presents the scatterplots of the revocation of NAFTA against the Trump vote share. The left panels shows the scatterplots at the district level, and the right panels at the state level. At the congressional district level, the slope of the relationship is negative. It is not significant in the baseline, but becomes significant in the other two scenarios. Looking closer, in the baseline the negative relationship is substantially attenuated by districts with a heavy presence of mining and quarrying, such as Texas 11th district (encompassing central Texas and eastern Texas cities of Midland and Odessa), the state of Wyoming (a single Congressional district), and West Virginia 3rd (roughly the southern half of the state). Since mining and quarrying experiences a large change in NTBs in the baseline, these districts are relatively better off from the policy change, but voted heavily for Trump. Dropping just 2 districts (out of 435) with the highest mining and quarrying employment shares renders the negative bilateral relationship significant at the 1% level. All in all, with the possible exception of heavily mining areas, Trump-voting congressional districts would experience systematically larger wage decreases if NAFTA is revoked.

The right side of Figure 6 depicts these relationships at the state level. This might be thought of as corresponding to voting for the president and the US Senate. Under the

NTB baseline, the slope is positive but not significant. Looking closer at the plot, it is clear that the slope is once again influenced by mining states such as Wyoming, North Dakota, and West Virginia, that voted for Trump but would lose relatively less from the revocation of NAFTA. In the upper left part of the plot are states in the South and the Midwest that voted for Trump but would be hurt the most by NAFTA revocation, with the top 5 largest wage reductions being in Wisconsin, Indiana, Iowa, Michigan, and Ohio. The two alternative NTB scenarios yield a negative slope: Trump-voting states are hurt relatively more by revoking NAFTA.

Figure 6: Real wage changes and 2016 Trump vote

Congressional district level
 State level

Tariff and NTB baseline

Tariff and uniform NTB

Notes: This figure depicts the scatterplots of the average real wage change from revoking NAFTA and the 2016 Trump vote share by congressional district (left side) and state (right side), along the OLS fit. The boxes report the coefficient, robust standard error, and the R^{2} of the bivariate regression.

Appendix Table A4 shows the top and bottom 10 US congressional districts in terms of mean real wage change. The second column also shows the mean change in real wage and tariff revenue. Under the assumption of uniformly distributed tariff revenue, this can be computed as $I W T_{j n}=w_{j n} L_{j n}+s_{j n} T_{n}$, where s_{j} is the share of employment of sector j in country n, and the mean change in district c is given by:

$$
\sum_{j} \omega_{j c}\left(\frac{\widehat{I W T}_{j n}}{\widehat{P}_{n}}-1\right)
$$

5.2 Political outcomes and heuristic measures of trade exposure to NAFTA

To better understand the patterns documented above, we next construct heuristic measures of trade exposure to NAFTA and correlate them with the real wage changes and voting patterns. We use three simple observable measures, intended to capture at an intuitive level some of the main driving forces behind the geographic distribution of losses. The specific-factors model delivers the intuition that factors employed in importcompeting sectors should benefit from a uniform increase in trade barriers, and sectors with an export orientation should lose. In a model with input-output linkages, factors in a sector employing imported inputs might lose, although that prediction depends on the substitution elasticities in production and demand.

Thus, at the sector level, we define import penetration as the share of imports from NAFTA in total absorption:

$$
I M P_{j}^{N A F T A}=\frac{I M P O R T S_{j}^{N A F T A}}{p_{j n} Q_{j n}},
$$

where, as before, $p_{j n} Q_{j n}$ is the total US spending (absorption) in an industry. Define export intensity as the share of output exported to NAFTA countries:

$$
E X P_{j}^{N A F T A}=\frac{E X P O R T S_{j}^{N A F T A}}{\sum_{k} \pi_{j, n k} p_{j k} Q_{j k}}
$$

where $\sum_{k} \pi_{j, n k} p_{j k} Q_{j k}$ is the total US output/sales in sector j. Define NAFTA input dependency as:

$$
I N P D E P_{j}^{N A F T A}=\frac{I N T E R M I M P O R T S_{j}^{N A F T A}}{I N T E R M U S E}
$$

where INTERMIMPORTS ${ }_{j}^{\text {NAFTA }}$ is the value of intermediate imports from the NAFTA countries, and INTERMUSE j is total spending on intermediate inputs for sector j.

These are aggregated to the congressional district level with employment shares:

$$
\begin{gathered}
\text { IMPORT EXPOSURE }=\sum_{j} \omega_{j c} I M P_{j}^{N A F T A}, \\
\text { EXPORT ORIENTATION }_{c}=\sum_{j} \omega_{j c} E X P_{j}^{N A F T A},
\end{gathered}
$$

and

$$
\text { IMPORTED INPUT INTENSITY }_{c}=\sum_{j} \omega_{j c} I N P D E P_{j}^{N A F T A}
$$

Thus, a congressional district has a high import exposure, for example, if it has high employment shares in sectors with high import penetration from NAFTA countries, and similarly for other measures.

The top row of Figure 7 presents the scatterplot of the real wage change due to the revocation of NAFTA against import exposure (left panel), export orientation (center panel) and imported input intensity (right panel). All three measures have statistically significant negative correlation with the real wage change. This is intuitive in the case of two of the measures: NAFTA export-oriented districts and those that import a lot of NAFTA inputs should lose more from dismantling NAFTA. However, the relationship is also negative for import exposure, which is not intuitive, as locations that compete with NAFTA imports should benefit in relative terms if NAFTA disappeared.

The bottom row reports the bivariate relationships between these three measures and the Trump vote. All three are positive and significant. This time, the import exposure measure delivers "intuitive" results, as the NAFTA import-competing locations voted more for Trump. But evidently so did those that export a lot to NAFTA countries, or use more NAFTA inputs.

This apparent incoherence is resolved by observing that the three heuristic measures are highly correlated among themselves. Import exposure has a 0.92 correlation with export orientation, and a 0.95 correlation with imported input intensity. Export orientation has a 0.86 correlation with imported input intensity.

The picture that emerges is that US congressional districts differ systematically in their overall trade openness with NAFTA. Locations that compete with NAFTA imports are also the ones that export the most to NAFTA, and use most NAFTA inputs. For these areas, a dismantling of NAFTA represents a larger fall in trade openness compared to locations not engaged with NAFTA, and thus larger real income falls. These are also the locations that on average voted for Trump.
Figure 7: Heuristic measures, real wage changes and 2016 Trump vote

This discussion shows how misleading it can be to rely on simple heuristic measures, especially in isolation. Looking at the strong positive correlation between the widely used import exposure index and the Trump vote may lead one to conclude that revoking NAFTA does indeed correspond to the economic interests of Trump-voting districts. However, it turns out that the districts with a high import-exposure level are also systematically different along other pertinent dimensions, such as export orientation.

Altogether, the patterns imply that the districts with higher import exposure would actually lose systematically more from revoking NAFTA. To further illustrate this point, Table 3 shows results of a regression of the real wage changes and vote shares on the three heuristic measures. Columns 1-3 report the regressions underlying the bivariate plots in Figure 7. Column 4 uses all three heuristics together. Now, the export orientation and imported input intensity still have same the "intuitive" sign, but the import exposure indicator switches sign and thus also becomes intuitive. Controlling for export orientation and imported input intensity, locations with greater NAFTA import exposure experience relatively positive (less negative) wage changes from revoking NAFTA. Columns 5 through 8 repeat the exercise for the Trump vote share. Here again, when all three heuristics are included together, the sign on the import exposure coefficient is unchanged and remains intuitive, but the sign on the export orientation switches in the expected direction: controlling for import exposure, districts with higher NAFTA export orientation votes less for Trump.

Table 3: Vote shares and heuristic measures								
Dep. Var.:	NAFTA rollback wage change				Trump vote share			(8)
Export orientation	$\begin{gathered} -8.178^{* * *} \\ (0.401) \end{gathered}$			$\begin{gathered} -30.74 * * * \\ (0.684) \end{gathered}$	$\begin{gathered} 2204.1^{* * *} \\ (172.4) \end{gathered}$			$\begin{gathered} -1219.9^{* *} \\ (469.0) \end{gathered}$
Import exposure		$\begin{gathered} -3.539 * * \\ (1.247) \end{gathered}$		$\begin{gathered} 25.64^{* * *} \\ (0.880) \end{gathered}$		$\begin{gathered} 2342.1^{* * *} \\ (161.5) \end{gathered}$		$\begin{gathered} 2602.2^{* * *} \\ (671.1) \end{gathered}$
Imported input intensity			$\begin{gathered} -6.151^{* *} \\ (1.860) \end{gathered}$	$\begin{gathered} -6.858^{* * *} \\ (1.562) \end{gathered}$			$\begin{gathered} 4118.8^{* * *} \\ (296.9) \end{gathered}$	$\begin{aligned} & 1420.9 \\ & (884.5) \end{aligned}$
N. obs. R^{2}	$\begin{gathered} 435 \\ 0.400 \end{gathered}$	$\begin{gathered} 435 \\ 0.092 \end{gathered}$	$\begin{gathered} 435 \\ 0.088 \end{gathered}$	$\begin{gathered} 435 \\ 0.932 \end{gathered}$	$\begin{gathered} 435 \\ 0.241 \end{gathered}$	$\begin{gathered} 435 \\ 0.335 \end{gathered}$	$\begin{gathered} 435 \\ 0.326 \end{gathered}$	$\begin{gathered} 435 \\ 0.351 \end{gathered}$

[^4]
6 Extensions and robustness

6.1 Mobile factors

All of the above analysis assumes that factors are immobile across sectors, and thus is meant to capture the short-run effects. In this section, we instead allow factors to be mobile across sectors, as is more standard in multi-sector trade models. Since cross-sectoral factor movements are subject to large frictions even at multi-year horizons (Artuç et al., 2010; Dix-Carneiro, 2014), this exercise is meant to capture the long-run effects. Note that in this environment, factor market clearing ensures that factor prices are the same in all sectors, and thus there is a single factor price change for each factor of production (capital and the three types of labor). However, there are still distributional effects across workers according to skill type, and across geographic locations according to the skill composition of the labor force.

Table 4: Skill specific wage and welfare changes

Notes: This table reports the aggregate real wage changes for each skill type, and the total welfare changes, in percentage points and in billion US\$, for the NAFTA countries under the three NAFTA revocation scenarios.

Table 4 reports the real wage changes by skill type. In the United States, in all scenarios the wage changes increase with skill: more skilled workers are hurt less by dismantling of NAFTA. Intriguingly, the pattern is U-shaped in Mexico, with the medium-skilled work-
ers hurt the most by NAFTA dissolution in all scenarios. In Canada, all skill types are worse off, but the relative ranking is not stable across scenarios, indicating sensitivity to assumptions on the pattern of trade cost changes across sectors.

The fourth and fifth columns report the total proportional and dollar amount welfare changes. These are very similar to the baseline, indicating that assumptions on crosssectoral factor mobility are not crucial for the aggregate welfare. A similar result was found by Levchenko and Zhang (2013).

Turning to the geographic distribution of real wage changes, we construct congressional district average real wage changes by using skill shares in each district, similarly to the immobile factor case:

$$
\sum_{s} \omega_{s c}\left(\frac{\widehat{w}_{s n}}{\widehat{P}_{n}}-1\right)
$$

where $\omega_{s c}$ is the share of skill s in district c. Thus, districts with more skilled workers lose relatively less in the long run from the dismantling of NAFTA, as their wages fall by less. Note that the range of wage changes across skills, at only 0.07 percentage points in the baseline, is far smaller than the range of wage changes across sectors in the specific-factors model, which was about 5 percentage points. Thus, as expected the range of average wage changes across locations is also quite small, about 0.02 percentage points. Figure 8 presents the scatterplots of the revocation of NAFTA against the Trump vote share. There is still a systematically negative relationship between the long-run district-level real wage change and the Trump vote. In fact, in several scenarios this relationship is stronger than in the specific-factors case.

Figure 8: Real wage changes and 2016 Trump vote, mobile factors Congressional district level

State level

Tariff and uniform NTB

Notes: This figure depicts the scatterplots of the average real wage change from revoking NAFTA and the 2016 Trump vote share by congressional district (left side) and state (right side) under the assumption of perfect factor mobility across sectors, along the OLS fit. The boxes report the coefficient, robust standard error, and the R^{2} of the bivariate regression.

6.2 Varying the productivity dispersion parameter

In this robustness check, we repeat the main counterfactuals using alternative values of $\theta=\{2.5 ; 8\}$. These values represent the typical range of θ used in the trade literature. Table 5 shows the employment weighted average wage change for the different values of θ. Table 5 presents the aggregate real wage changes and welfare changes. We only report the baseline NTB scenario (the others deliver similar results and are available upon request). The alternative values of θ produce quite similar overall welfare changes. Appendix Figures A1 and A2 present the scatterplots of Trump vote against real wage changes at the congressional district level for the two alternative values of θ. The overall patterns are the same as in the baseline.

Table 5: Aggregate real wage changes and welfare changes for different θ (Tariff and NTB baseline)

	Real wage change, $\%$	Total welfare change, $\%$	in bln. US\$
		$\theta=2.5$	
Canada	-1.93		-2.25
Mexico	-1.97	-1.77	-37.76
United States	-0.32	-0.26	-21.59
		$\theta=8$	-46.97
			-2.00
Canada	-1.40	-1.72	-33.64
Mexico	-1.59	-0.19	-21.00
United States	-0.23		-34.73

Notes: This table reports the aggregate real wage changes and the total welfare changes, in percentage points and in billion US\$, for the NAFTA countries under the two alternative values of θ.

6.3 Difference with Romney vote

It may be informative to focus on voters that changed their vote in the 2016 election. To this end, Appendix Figure A3 shows the scatterplots of the difference between the Trump 2016 vote share and the Romney 2012 vote share against the average real wage change at the congressional district level (left panel) and state level (right panel). Negative correlations are if anything more pronounced for the Trump-Romney increment than the Trump vote itself, especially at the state level.

7 Conclusion

Today's global production arrangements will lead to strong spillovers of protectionist policies. Barriers to input trade can reduce the competitiveness of domestic industries as internationally sourced inputs become more expensive. In a global input-output network, a tariff aimed at one specific trade partner or import sector ultimately affects all sectors of the domestic economy, yet very heterogeneously so. It is thus a domestic redistributive policy. In a highly interconnected world economy with supply chains crossing country borders, it is not transparent even to professional economists which workers stand to gain or lose from trade policy changes. In this paper, we undertake a quantitative assessment of both the aggregate and the distributional effects of one proposed trade policy change: revoking NAFTA.

We find that NAFTA revocation lowers real incomes in the large majority of sectors in all three NAFTA countries, and that average wages fall in nearly all US congressional districts, and in all Mexican states and Canadian provinces. Within this range of negative values, however, these are still differences in outcomes across locations. Correlating real wage changes with recent voting patterns, we show that if anything Trump-voting congressional districts would lose relatively more from the revocation of NAFTA. Our results underscore the difficulty of making simple heuristic judgements about who gains and loses from trade policy changes in the current global economy.

References

Artuç, Erhan, Shubham Chaudhuri, and John McLaren, "Trade Shocks and Labor Adjustment: A Structural Empirical Approach," American Economic Review, June 2010, 100 (3), 1008-45.

Autor, David H., David Dorn, and Gordon H. Hanson, "The China Syndrome: Local Labor Market Effects of Import Competition in the United States," American Economic Review, October 2013, 103 (6), 2121-68.

Caliendo, Lorenzo and Fernando Parro, "Estimates of the Trade and Welfare Effects of NAFTA," Review of Economic Studies, 2015, 82 (1), 1-44.

Costinot, Arnaud and Andrés Rodríguez-Clare, "Trade Theory with Numbers: Quantifying the Consequences of Globalization," in Gita Gopinath, Elhanan Helpman, and Kenneth Rogoff, eds., Handbook of International Economics, Vol. 4, Elsevier, 2014, chapter 4, pp. 197-261.

Deardorff, Alan V. and Robert M. Stern, Computational Analysis of Global Trading Arrangements, Ann Arbor: The University of Michigan Press, 1990.

Dekle, Robert, Jonathan Eaton, and Samuel Kortum, "Global Rebalancing with Gravity: Measuring the Burden of Adjustment," IMF Staff Papers, July 2008, 55 (3), 511-540.

Dhingra, Swati, Hanwei Huang, Gianmarco Ottaviano, João Paulo Pessoa, Thomas Sampson, and John Van Reenen, "The costs and benefits of leaving the EU: trade effects," Economic Policy, October 2017, 32 (92), 651-705.

Dix-Carneiro, Raphael, "Trade Liberalization and Labor Market Dynamics," Econometrica, May 2014, 83 (3), 825-885.

Eaton, Jonathan and Samuel S. Kortum, "Technology, Geography, and Trade," Econometrica, September 2002, 70 (5), 1741-1779.

Felbermayr, Gabriel, Marina Steininger, Erdal Yalcin et al., "Global Impact of a Protectionist US Trade Policy," ifo Forschungsberichte, 2017.

Galle, Simon, Andrés Rodríguez-Clare, and Moises Yi, "Slicing the Pie: Quantifying the Aggregate and Distributional Effects of Trade," August 2017. mimeo, BI Norwegian Business School, UC Berkeley, and US Census Bureau.

Harrison, Glenn W., Thomas F. Rutherford, and David G. Tarr, "Quantifying the Uruguay Round," The Economic Journal, 1997, 107 (444), 1405-1430.

Hertel, Thomas W., ed., Global Trade Analysis: Modeling and Applications, New York: Cambridge University Press, 1997.

Jones, Ronald, "A Three-Factor Model in Theory, Trade, and History," in Jagdish Bhagwati, ed., Trade, Balance of Payments, and Growth: Papers in International Economics in Honor of Charles P. Kindleberger, Amsterdam: North Holland, 1971.

Levchenko, Andrei A. and Jing Zhang, "The Global Labor Market Impact of Emerging Giants: a Quantitative Assessment," IMF Economic Review, August 2013, 61 (3), 479-519.
_ and _ , "The Evolution of Comparative Advantage: Measurement and Welfare Implications," Journal of Monetary Economics, April 2016, 78, 96-111.

Mussa, Michael, "Tariffs and the Distribution of Income: The Importance of Factor Specificity, Substitutability, an Intensity in the Short and Long Run," Journal of Political Economy, 1974, 82, 1191-1203.

Timmer, Marcel P., Erik Dietzenbacher, Bart Los, Robert Stehrer, and Gaaitzen J. de Vries, "An Illustrated User Guide to the World Input-Output Database: the Case of Global Automotive Production," Review of International Economics, August 2015, 23 (3), 575-605.

Appendix A Solution algorithm

To solve equations (8) to (15) start by guessing $\left\{\hat{w}_{j n}, \hat{r}_{j n}\right\}$ and use the following algorithm.
i. Solve for $\hat{p}_{j n}$ using equations (14) and (12):

$$
\begin{array}{r}
\hat{p}_{j n}=\left(\sum_{m=1}^{N} \pi_{j, m n}\left(\hat{c}_{j m} \hat{\kappa}_{j, m n}\right)^{-\theta}\right)^{-\frac{1}{\theta}} \\
\hat{p}_{j n}=\left[\sum_{m=1}^{N} \pi_{j, m n}^{j}\left(\left(\hat{w}_{j m}^{\alpha_{j m}} \hat{r}_{j m}^{1-\alpha_{j m}}\right)^{\beta_{j m}}\left(\prod_{i=1}^{J}\left(\hat{p}_{i m}\right)^{\gamma_{i j, m}}\right)^{1-\beta_{i m}} \hat{\kappa}_{j, m n}\right)^{-\theta}\right]^{-\frac{1}{\theta}}
\end{array}
$$

which can be solved iteratively. Then use $\hat{p}_{j n}$ to solve for $\hat{c}_{j n}$ and \hat{P}_{n} :

$$
\begin{array}{r}
\hat{c}_{j n}=\left(\hat{w}_{j n}^{\alpha_{j n}} \hat{r}_{j n}^{1-\alpha_{j n}}\right)^{\beta_{j n}}\left(\prod_{i=1}^{J}\left(\hat{p}_{i n}\right)^{\gamma_{i j n}}\right)^{1-\beta_{j n}} \\
\hat{P}_{n}=\prod_{j=1}^{J}\left(\hat{p}_{j n}\right)^{\xi_{j n}}
\end{array}
$$

ii. Solve for $\hat{\pi}_{j, m n}$ using equation (11) and $\hat{c}_{j n}$:

$$
\hat{\pi}_{j, m n}=\frac{\left(\hat{c}_{j m} \hat{\kappa}_{j, m n}\right)^{-\theta}}{\sum_{m^{\prime}=1}^{N} \pi_{j, m^{\prime} n}\left(\hat{c}_{j m^{\prime}} \hat{\kappa}_{j, m^{\prime} n}\right)^{-\theta}}
$$

iii. Use equations (8) and (9) to solve for $\hat{Y}_{j n}$ and $\hat{Q}_{j n}$:

$$
\begin{aligned}
& \hat{p}_{j n} \hat{y}_{j n}=\sum_{i=1}^{J} \widehat{w}_{i n} S L_{i n}+\sum_{i=1}^{J} \widehat{r}_{i n} S K_{i n}+\sum_{m \neq n} \sum_{i=1}^{J} \frac{\tau_{i, m n}^{\prime} \widehat{\pi}_{i, m n} \widehat{p}_{i n} \widehat{Q}_{i n}}{1+\tau_{i, m n}^{\prime}} \frac{\pi_{i, m n} p_{i n} Q_{i n}}{I_{n}}+\widehat{D}_{n} S D_{n} \\
& \hat{p}_{j n} \hat{Q}_{j n}\left(p_{j n} Q_{j n}\right)=\hat{p}_{j n} \hat{Y}_{j n}\left(p_{j n} Y_{j n}\right)+\sum_{i=1}^{J}\left(1-\beta_{i n}\right) \gamma_{j i, n}\left(\sum_{m=1}^{N} \frac{\hat{\pi}_{i, n m} \pi_{i, n m} \hat{p}_{i m} \hat{Q}_{i m}\left(p_{i m} Q_{i m}\right)}{\left(1+\tau_{i, n m}^{\prime}\right)}\right)
\end{aligned}
$$

This can be solved iteratively.
iv. update the next guess for $\hat{w}_{j n}, \hat{r}_{j n}$ from the labor market clearing condition

$$
\widehat{w}_{j n}=\widehat{r}_{j n}=\frac{\sum_{m=1}^{N} \frac{\widehat{\pi}_{j, n m} \widehat{\widehat{p}}_{j m} \widehat{Q}_{j m} \tau_{j, n m} p_{j m} Q_{j m}}{1+\tau_{j, n m}}}{\sum_{m=1}^{N} \frac{\pi_{j, n m} p_{j m} Q_{j m}}{1+\tau_{j, n m}}} .
$$

the solution is defined up to a numeraire, and in updating the $\hat{w}_{j n}$ and $\hat{r}_{j n}{ }^{\prime}$ s, re-set a
numeraire country's $\hat{w}_{1}=1$ (where country 1 , sector 1 is the numeraire). Then the actual next guess to be returned to step 1 is:

$$
\begin{align*}
\hat{w}_{j n}^{n e x t} & =\frac{\hat{\tilde{w}}_{j n}^{\text {next }}}{\hat{\tilde{w}}_{11}^{\text {next }}} \tag{A.1}\\
\hat{r}_{j n}^{\text {next }} & =\frac{\hat{\tilde{r}}_{j n}^{\text {next }}}{\hat{\tilde{w}}_{11}^{\text {next }}} \tag{A.2}
\end{align*}
$$

Table A3: Assumed changes in US tariffs and NTB on Canada and Mexico if NAFTA is revoked

WIOD Sector	$\Delta \tau_{j, \text { CANUSA }}$	$\Delta \tau_{j, \text { MEXUSA }}$	$\Delta \eta_{j, m U S A}$
1	3.447	3.440	7.651
2	3.898	3.362	0
3	0.088	0.324	0
4	0.003	0.006	27.997
5	3.526	4.992	5.076
6	3.006	4.323	0
7	0.620	5.371	9.606
8	0.225	1.812	6.609
9	0.020	0.001	23.593
10	3.677	4.815	7.506
11	2.741	2.918	8.056
12	0.176	0.370	4.795
13	1.962	1.491	11.365
14	1.816	3.927	0.606
15	1.043	0.999	8.637
16	1.844	3.190	16.779
17	2.094	1.846	1.782
18	2.482	2.772	9.840
19	0.982	1.400	3.134
20	2.406	6.288	12.682
21	0.188	1.206	7.074
22-23	1.573	1.803	0
24-26	0.800	4.118	9.734
27	0	0	7.660
28-29	0	0	25.964
30	0	0	32.112
31	0	0	10.204
32	0	0	9.840
33	0	0	4.741
34-35	0	0	12.830
36	0	0	0
37-40	0.004	0.002	15.182
41-43	0	0	14.974
44-49	0	0	17.838
50	0	0	0
51-52	0	0	0
53	0	0	27.396
54	0.364	1.677	4.424

Notes: This Table reports the change in sectoral tariffs on Mexico and Canada, and the change in the NTBs imposed by the US on Mexico and Canada, if NAFTA is revoked, expressed in percentage points. The sector key is in Table A2.

Figure A1: Real wage changes and 2016 Trump vote, $\theta=2.5$
Congressional district level
State level

Tariff and uniform NTB

Notes: This figure depicts the scatterplots of the average real wage change from revoking NAFTA and the 2016 Trump vote share by congressional district (left side) and state (right side), along the OLS fit. The boxes report the coefficient, robust standard error, and the R^{2} of the bivariate regression. The model is solved under $\theta=2.5$.

Figure A2: Real wage changes and 2016 Trump vote, $\theta=8$

Congressional district level

State level
Tariff and NTB baseline

Tariff and uniform NTB

Notes: This figure depicts the scatterplots of the average real wage change from revoking NAFTA and the 2016 Trump vote share by congressional district (left side) and state (right side), along the OLS fit. The boxes report the coefficient, robust standard error, and the R^{2} of the bivariate regression. The model is solved under $\theta=8$.

Figure A3: Real wage changes and the difference between 2016 Trump vote and the 2012 Romney vote

Congressional district level

State level

Tariff and NTB baseline

Tariff and uniform NTB

Notes: This figure depicts the scatterplots of the average real wage change from revoking NAFTA and the difference between the 2016 Trump vote share and the 2012 Romney vote share by congressional district (left side) and state (right side), along the OLS fit. The boxes report the coefficient, robust standard error, and the R^{2} of the bivariate regression.

Table A1: List of countries

Country	Country code
Australia	AUS
Austria	AUT
Belgium	BEL
Bulgaria	BGR
Brazil	BRA
Canada	CAN
Switzerland	CHE
China	CHN
Cyprus	CYP
Czech Republic	CZE
Germany	DEU
Denmark	DNK
Spain	ESP
Estonia	EST
Finland	FIN
France	FRA
United Kingdom	GBR
Greece	GRC
Croatia	HRV
Hungary	HUN
Indonesia	IDN
India	IND
Ireland	IRL
Italy	ITA
Japan	JPN
Korea	KOR
Lithuania	LTU
Latvia	LVA
Mexico	MEX
Netherlands	NLD
Norway	NOR
Poland	POL
Portugal	PRT
Romania	ROU
Slovakia	SVK
Slovenia	SVN
Sweden	SWE
Taiwan	TWN
United States	USA
Rest of the World	ROW

Table A2: List of sectors

Sector description	WIOD sector
Crop and animal production, hunting	1
Forestry and logging	2
Fishing and aquaculture	3
Mining and quarrying	4
Manufacture of food products, beverages and tobacco products	5
Manufacture of textiles, wearing apparel and leather products	6
Manufacture of wood and of products of wood and cork, except furniture	7
Manufacture of paper and paper products	8
Printing and reproduction of recorded media	9
Manufacture of coke and refined petroleum products	10
Manufacture of chemicals and chemical products	11
Manufacture of basic pharmaceutical products and pharmaceutical preparations	12
Manufacture of rubber and plastic products	13
Manufacture of other non-metallic mineral products	14
Manufacture of basic metals	15
Manufacture of fabricated metal products, except machinery and equipment	16
Manufacture of computer, electronic and optical products	17
Manufacture of electrical equipment	18
Manufacture of machinery and equipment n.e.c.	19
Manufacture of motor vehicles, trailers and semi-trailers	20
Manufacture of other transport equipment	21
Other manufacturing, repair and installation of machinery and equipment	$22-23$
Energy, AC; Water ; Sewerage and waste management services	$24-26$
Construction	27
Wholesale and retail trade	$28-29$
Retail trade, except of motor vehicles and motorcycles	30
Land transport and transport via pipelines	31
Water transport	32
Air transport	33
Warehousing and support activities for transportation; Postal activities	$34-35$
Accommodation and food service activities	36
Publishing, telecommunications, computer, information service	$37-40$
Financial and insurance service activities and auxiliaries	$41-43$
Real estate, legal, accounting, consultancy, scientific, veterinary activities	$44-49$
Administrative and support service activities	50
Public admin. and defense; compulsory social security; Education	$51-52$
Human health and social work activities	53
Other service activities; Activities of households as employers	54

Table A4: Top and bottom 10 U.S. districts (Tariff and NTB baseline)		
	Top 10	
District	Real wage change, \%	Wage+tariff revenue, \%
Texas, 11th	0.08	0.18
Wyoming (at large)	-0.04	0.07
West Virginia, 3rd	-0.08	0.04
New Mexico, 2nd	-0.11	0.01
North Dakota (at large)	-0.14	-0.02
Oklahoma, 3rd	-0.14	-0.03
Texas, 19th	-0.15	-0.03
Texas, 23rd	-0.15	-0.03
Louisiana, 3rd	-0.15	-0.04
Kentucky, 5th	-0.16	-0.04
	Bottom 10	
District	Real wage change	wage+tariff revenue
Ohio, 4th	-0.41	-0.30
Georgia, 14th	-0.40	-0.28
Ohio, 5th	-0.40	-0.28
Indiana, 2nd	-0.39	-0.28
Michigan, 10th	-0.38	-0.26
Indiana, 3rd	-0.38	-0.27
Michigan, 2nd	-0.38	-0.27
Wisconsin, 6th	-0.38	-0.27
Wisconsin, 8th	-0.37	-0.26
Texas, 14th	-0.37	-0.25
Average	-0.27	-0.15
Median	-0.27	-0.16
Standard deviation	0.04	0.05

Notes: This Table reports the real wage changes of the top 10 and bottom 10 US congressional districts with the largest/smallest real wage changes.

[^0]: *Preliminary version of a paper prepared for the 2018 IMF Jacques Polak Annual Research Conference and the IMF Economic Review. We are grateful to Raphael Auer, who was a co-author at an earlier stage of this project, Stijn Claessens and workshop participants at the BIS for helpful comments, and to Julieta Contreras for excellent research assistance. E-mail: bbonadio@umich.edu, alev@umich.edu.

[^1]: ${ }^{1}$ Section 6.1 presents the results when factors are mobile across sectors, a scenario intended to capture the long-run outcomes.

[^2]: ${ }^{2}$ The latest WIOD release does not include worker breakdowns by skill. For that information, we use the previous (2011) WIOD release, with skill-specific sectoral labor data pertaining to 2009.

[^3]: ${ }^{3}$ We extract tariff data directly at the ISIC 3 sectoral level, and use a correspondence to ISIC 3.1, then ISIC 4, to match it with the WIOD data classification.
 ${ }^{4}$ Since we are not changing other countries' tariffs, and are not keeping track of non-NAFTA tariff revenue, this simplification is inconsequential.

[^4]: Notes: Robust standard errors in parentheses. ${ }^{* * *}$: significant at the 1% level; ${ }^{* *}$: significant at the 5% level. In columns (1) to (4), the dependent variable is the percentage wage change caused by a revocation of NAFTA in the congressional district. In columns (5) to (8), the dependent variable
 described in detail in the text.

