Optimal Monetary Policy under Dollar Pricing

Konstantin Egorov
kegorov@NES.ru

Dmitry Mukhin
dmitry.mukhin@Yale.edu

“Current Policy Challenges Facing Emerging Markets”
Santiago, Chile, July 24, 2019
Motivation

- Global use of the dollar
 - in financial markets ⇒ “Global Financial Cycle” (Rey 2013)
Motivation

- Global use of the dollar
 - in financial markets ⇒ “Global Financial Cycle” (Rey 2013)
 - in international trade
Motivation

- Global use of the dollar
 - in financial markets ⇒ “Global Financial Cycle” (Rey 2013)
 - in international trade

- International spillovers as positive implications
 - for global trade and inflation (Gopinath et al. 2019)
Motivation

- Global use of the dollar
 - in financial markets ⇒ “Global Financial Cycle” (Rey 2013)
 - in international trade

- International spillovers as positive implications
 - for global trade and inflation (Gopinath et al. 2019)

- Build a framework for normative implications
 - consistent with key facts about prices
Motivation

- Global use of the dollar
 - in financial markets ⇒ “Global Financial Cycle” (Rey 2013)
 - in international trade

- International spillovers as **positive** implications
 - for global trade and inflation (Gopinath et al. 2019)

- Build a framework for **normative** implications
 - consistent with **key facts about prices**
 1. high PT into border prices
 2. low PT into retail prices
Motivation

- Global use of the dollar
 - in financial markets ⇒ “Global Financial Cycle” (Rey 2013)
 - in international trade

- International spillovers as positive implications
 - for global trade and inflation (Gopinath et al. 2019)

- Build a framework for normative implications
 - consistent with key facts about prices ⇒ key ingredients
 1. high PT into border prices ⇒ prices sticky in dollars (DCP)
 2. low PT into retail prices ⇒ input-output linkages across firms
Motivation

- Global use of the dollar
 - in financial markets ⇒ “Global Financial Cycle” (Rey 2013)
 - in international trade

- International spillovers as positive implications
 - for global trade and inflation (Gopinath et al. 2019)

- Build a framework for normative implications
 - consistent with key facts about prices ⇒ key ingredients
 1. high PT into border prices ⇒ prices sticky in dollars (DCP)
 2. low PT into retail prices ⇒ input-output linkages across firms
 - solve for the optimal non-cooperative policy
Motivation

- Global use of the dollar
 - in financial markets ⇒ “Global Financial Cycle” (Rey 2013)
 - in international trade ⇒ “Global Monetary Cycle” (this paper)

- International spillovers as positive implications
 - for global trade and inflation (Gopinath et al. 2019)

- Build a framework for normative implications
 - consistent with key facts about prices ⇒ key ingredients
 1. high PT into border prices ⇒ prices sticky in dollars (DCP)
 2. low PT into retail prices ⇒ input-output linkages across firms
 - solve for the optimal non-cooperative policy
Does U.S. monetary policy generate negative spillovers on the RoW? If so, should the Fed be concerned about it? (Bernanke'17)
1. Does U.S. monetary policy generate negative spillovers on the RoW? If so, should the Fed be concerned about it? (Bernanke'17)

2. What is the optimal response – float vs. peg? (Friedman'53)
1. Does U.S. monetary policy generate negative spillovers on the RoW? If so, should the Fed be concerned about it? (Bernanke’17)

2. What is the optimal response – float vs. peg? (Friedman’53)

3. Can capital controls help? (Blanchard’17)
1. Does U.S. monetary policy generate negative spillovers on the RoW? If so, should the Fed be concerned about it? (Bernanke’17)

2. What is the optimal response – float vs. peg? (Friedman’53)

3. Can capital controls help? (Blanchard’17)

4. Are there gains from international cooperation? (Benigno-Benigno’03)
Does U.S. monetary policy generate negative spillovers on the RoW? If so, should the Fed be concerned about it? (Bernanke’17)

What is the optimal response – float vs. peg? (Friedman’53)

Can capital controls help? (Blanchard’17)

Are there gains from international cooperation? (Benigno-Benigno’03)

Is there “exorbitant privilege” from DCP for U.S.? (Gourinchas-Rey’07)
1. Does U.S. monetary policy generate negative spillovers on the RoW? If so, should the Fed be concerned about it? (Bernanke’17)

2. What is the optimal response – float vs. peg? (Friedman’53)

3. Can capital controls help? (Blanchard’17)

4. Are there gains from international cooperation? (Benigno-Benigno’03)

5. Is there “exorbitant privilege” from DCP for U.S.? (Gourinchas-Rey’07)

6. Are there gains from a currency union (Eurozone)? (Mundell’61)
Relation to the Literature

- **Empirical evidence:**

- **Theories of currency choice:**

- **Optimal monetary policy in open economy:**
MODEL
Continuum of small open economies (Gali & Monacelli 2005)
- U.S. is symmetric except for DCP
Setup

Continuum of small open economies (Gali & Monacelli 2005)
- U.S. is symmetric except for DCP

Key assumptions:

1. international prices are sticky in dollars
2. foreign intermediates in production
Consumers:

- CES consumption bundle with home bias
 \[C_{it} = \left[(1 - \gamma)^{\frac{1}{\theta}} C_{iit}^{\frac{\theta - 1}{\theta}} + \gamma^\frac{1}{\theta} \int C_{jit}^{\frac{\theta - 1}{\theta}} \, dj \right]^{\frac{\theta}{\theta - 1}} \]

- complete asset markets

Firms:

- Cobb-Douglas technology
 \[Y_{it} = A_{it} X_{it}^{\alpha_{it}} L_{iit}^{1 - \alpha_{it}} \]

Government:

- monetary policy with commitment
- labor subsidy (→ domestic markup) + export tax (→ dynamic ToT)
Setup

- **Consumers:**
 - CES consumption bundle with home bias
 \[C_{it} = \left[(1 - \gamma) \frac{1}{\theta} C_{iit}^{\theta-1} + \gamma \frac{1}{\theta} \int C_{jit}^{\theta-1} \, dj \right]^{\frac{\theta}{\theta-1}} \]
 - complete asset markets

- **Firms:**
 - Cobb-Douglas technology
 \[Y_{it} = A_{it} X_{it}^\alpha L_{it}^{1-\alpha} \]
 - Rotemberg pricing:
 1. domestic market \(\rightarrow P_{iit} \) (in local currency)
 2. foreign markets \(\rightarrow P_{it}^* \) (in dollars)

- **Government:**
 - monetary policy with commitment
 - labor subsidy \(\rightarrow \) domestic markup + export tax \(\rightarrow \) dynamic ToT
Setup

- Consumers:
 - CES consumption bundle with home bias
 \[C_{it} = \left[(1 - \gamma)^{\frac{1}{\theta}} C_{iit}^{\frac{\theta - 1}{\theta}} + \gamma^{\frac{1}{\theta}} \int C_{jit}^{\frac{\theta - 1}{\theta}} \, dj \right]^{\frac{\theta}{\theta - 1}} \]
 - complete asset markets

- Firms:
 - Cobb-Douglas technology
 \[Y_{it} = A_{it} X_{it}^{\alpha} L_{it}^{1 - \alpha} \]
 - Rotemberg pricing:
 1. domestic market → \(P_{iit} \) (in local currency)
 2. foreign markets → \(P_{it}^* \) (in dollars)

- Government:
 - monetary policy with commitment
 - labor subsidy (→ domestic markup) + export tax (→ dynamic ToT)
OPTIMAL POLICY
Non-U.S. Policy

Can the first best be achieved?

\[W_{it} - \alpha P_{it} = MC_{it} = MU_{it} = P_{iit} - \theta_{it} = (1 - \gamma) P_{1} - \theta_{iit} + \gamma (E_{it} P^{*}_{t}) 1 - \theta \]

Proposition

The optimal policy in non-U.S. countries:

1. fully stabilizes domestic prices,
2. partially pegs exchange rate to the dollar,
3. gives rise to a Global Monetary Cycle.

- U.S. tightens $E_{it} \uparrow$, $P_{it} \uparrow \Rightarrow$ non-U.S. tightens $E_{it} \downarrow$, $P_{it} \downarrow$, $W_{it} \downarrow$

- Key ingredients: no peg if either 1) producer pricing or 2) $\alpha \rightarrow 0$
Non-U.S. Policy

- Can the first best be achieved?
 - for closed economy and producer pricing, yes
Non-U.S. Policy

Can the first best be achieved?

— for closed economy and producer pricing, yes
— for dollar pricing, no (exports are suboptimal)
Can the first best be achieved?
 — for closed economy and producer pricing, yes
 — for dollar pricing, no (exports are suboptimal)

If domestic margin is stabilized, export margin is constrained-efficient

Proposition
The optimal policy in non-U.S. countries:

1. fully stabilizes domestic prices,
2. partially pegs exchange rate to the dollar,
3. gives rise to a Global Monetary Cycle.

Key ingredients:
- no peg if either 1) producer pricing or 2) $\alpha \to 0$
Non-U.S. Policy

- Can the first best be achieved?
 - for closed economy and producer pricing, yes
 - for dollar pricing, no (exports are suboptimal)

- If domestic margin is stabilized, export margin is constrained-efficient
 - changing export prices is costly
 - private and social costs coincide
 - under appropriate subsidy, benefits coincide too
 - without other distortions, laissez-faire is efficient subject to adj. costs
Can the first best be achieved?
 — for closed economy and producer pricing, yes
 — for dollar pricing, no (exports are suboptimal)

If domestic margin is stabilized, export margin is constrained-efficient
Optimal policy stabilizes domestic margin

\[W_{it} = MC_{it} = MU_{C_{iit}} = P_{iit} \]

\[P_{1} - \theta_{it} = (1 - \gamma) P_{1} - \theta_{iit} + \gamma (E_{it} P^*_{t}) \]

Proposition
The optimal policy in non-U.S. countries:
1. fully stabilizes domestic prices,
2. partially pegs exchange rate to the dollar,
3. gives rise to a Global Monetary Cycle.

— U.S. tightens \(\Rightarrow E_{it} \uparrow \), \(P_{it} \uparrow \Rightarrow \) non-U.S. tightens \(E_{it} \downarrow \), \(P_{it} \downarrow \), \(W_{it} \downarrow \)

— Key ingredients:
 no peg if either 1) producer pricing or 2) \(\alpha \rightarrow 0 \)
Non-U.S. Policy

- Can the first best be achieved?
 - for closed economy and producer pricing, yes
 - for dollar pricing, no (exports are suboptimal)

- If domestic margin is stabilized, export margin is constrained-efficient

- Optimal policy stabilizes domestic margin

\[
MC_{it} = MU_{C_{iit}}
\]

Proposition

The optimal policy in non-U.S. countries:
1. fully stabilizes domestic prices,
2. partially pegs exchange rate to the dollar,
3. gives rise to a Global Monetary Cycle.

- U.S. tightens \(E_{it} \uparrow \), \(P_{it} \uparrow \Rightarrow \) non-U.S. tightens \(E_{it} \downarrow \), \(P_{it} \downarrow \), \(W_{it} \downarrow \)

- Key ingredients:
 - no peg if either 1) producer pricing or 2) \(\alpha \rightarrow 0 \)
Non-U.S. Policy

- Can the first best be achieved?
 - for closed economy and producer pricing, yes
 - for dollar pricing, no (exports are suboptimal)

- If domestic margin is stabilized, export margin is constrained-efficient

- Optimal policy stabilizes domestic margin

\[
MC_{it} = MU_{C_{iit}} = P_{iit}
\]
Non-U.S. Policy

- Can the first best be achieved?
 - for closed economy and producer pricing, yes
 - for dollar pricing, no (exports are suboptimal)

- If domestic margin is stabilized, export margin is constrained-efficient
- Optimal policy stabilizes domestic margin

\[MC_{it} = MU_{C_{iit}} = P_{iit} \]

Proposition

The optimal policy in non-U.S. countries:

1. fully stabilizes domestic prices,

— Generalization of Casas, Diez, Gopinath & Gourinchas (2017)
Non-U.S. Policy

- Can the first best be achieved?
 - for closed economy and producer pricing, yes
 - for dollar pricing, no (exports are suboptimal)

- If domestic margin is stabilized, export margin is constrained-efficient

- Optimal policy stabilizes domestic margin

\[
\frac{W_{it}^{1-\alpha}P_{it}^{\alpha}}{A_{it}} = MC_{it} = MU_{C_{ii}} = P_{iit}
\]

\[
P_{it}^{1-\theta} = (1 - \gamma)P_{iit}^{1-\theta} + \gamma (E_{it}P_{t}^*)^{1-\theta}
\]

Proposition

The optimal policy in non-U.S. countries:

1. fully stabilizes domestic prices,

2. partially pegs exchange rate to the dollar,
Non-U.S. Policy

- Can the first best be achieved?
 - for closed economy and producer pricing, yes
 - for dollar pricing, no (exports are suboptimal)

- If domestic margin is stabilized, export margin is constrained-efficient

- Optimal policy stabilizes domestic margin
 \[
 \frac{W_{it}^{1-\alpha} P_{it}^\alpha}{A_{it}} = MC_{it} = MU_{C_{iit}} = P_{iit}
 \]
 \[
 P_{it}^{1-\theta} = (1 - \gamma) P_{iit}^{1-\theta} + \gamma (E_{it} P_t^*)^{1-\theta}
 \]

Proposition

The optimal policy in non-U.S. countries:

1. fully stabilizes domestic prices,
2. partially pegs exchange rate to the dollar,

- U.S. tightens \(\Rightarrow E_{it} \uparrow, P_{it} \uparrow \Rightarrow \) non-U.S. tightens \(E_{it} \downarrow, P_{it} \downarrow, W_{it} \downarrow \)
Non-U.S. Policy

- Can the first best be achieved?
 - for closed economy and producer pricing, \textit{yes}
 - for dollar pricing, \textit{no} (exports are suboptimal)

- If domestic margin is \textit{stabilized}, export margin is \textit{constrained-efficient}

- Optimal policy stabilizes domestic margin

\[
\frac{W_{it}^{1-\alpha} P_{it}^\alpha}{A_{it}} = MC_{it} = MU_{C_{it}} = P_{iit} \\

P_{it}^{1-\theta} = (1 - \gamma) P_{iit}^{1-\theta} + \gamma (E_{it} P_{t}^*)^{1-\theta}
\]

Proposition

The optimal policy in non-U.S. countries:

1. \textit{fully stabilizes domestic prices},
2. \textit{partially pegs exchange rate to the dollar},

- U.S. tightens $\Rightarrow E_{it} \uparrow, P_{it} \uparrow \Rightarrow$ non-U.S. tightens $E_{it} \downarrow, P_{it} \downarrow, W_{it} \downarrow$
- \textbf{Key ingredients:} no peg if either 1) \textit{producer pricing} or 2) $\alpha \to 0$
Non-U.S. Policy

- Can the first best be achieved?
 - for closed economy and producer pricing, yes
 - for dollar pricing, no (exports are suboptimal)

- If domestic margin is stabilized, export margin is constrained-efficient

- Optimal policy stabilizes domestic margin

\[
\frac{W_{it}^{1-\alpha} P_{it}^{\alpha}}{A_{it}} = MC_{it} = MU_{C_{iit}} = P_{iit}
\]

\[
P_{it}^{1-\theta} = (1 - \gamma) P_{iit}^{1-\theta} + \gamma (E_{it} P_{t}^{*})^{1-\theta}
\]

Proposition

The optimal policy in non-U.S. countries:

1. fully stabilizes domestic prices,
2. partially pegs exchange rate to the dollar,
3. gives rise to a Global Monetary Cycle.

- U.S. tightens ⇒ \(E_{it} \uparrow, P_{it} \uparrow \) ⇒ non-U.S. tightens \(E_{it} \downarrow, P_{it} \downarrow, W_{it} \downarrow \)
- **Key ingredients:** no peg if either 1) producer pricing or 2) \(\alpha \to 0 \)
Can capital controls insulate from U.S. spillovers?

Blanchard (2016): “[The use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects.”
Can capital controls insulate from U.S. spillovers?

Blanchard (2016): “[The use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects.”

Augment monetary policy with state-contingent taxes on capital flows.
Can capital controls insulate from U.S. spillovers?

Blanchard (2016): “[The use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects.”

Augment monetary policy with state-contingent taxes on capital flows

Proposition

Capital controls do not insulate economies from U.S. spillovers and are not used, i.e. allocation is the same w/ and w/o capital controls.
Can capital controls insulate from U.S. spillovers?

Blanchard (2016): “[The use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects.”

Augment monetary policy with state-contingent taxes on capital flows

Proposition

Capital controls do not insulate economies from U.S. spillovers and are not used, i.e. allocation is the same w/ and w/o capital controls.

- Farhi & Werning (ECM’2016): risk-sharing is generically inefficient when allocation is not the first best due to “AD externality”
Can capital controls insulate from U.S. spillovers?

Blanchard (2016): “The use of capital controls by EMs] allows AEs to use monetary policy to increase domestic demand, while shielding EMs of the undesirable exchange rate effects.”

Augment monetary policy with state-contingent taxes on capital flows

Proposition

Capital controls do not insulate economies from U.S. spillovers and are not used, i.e. allocation is the same w/ and w/o capital controls.

— Farhi & Werning (ECM’2016): risk-sharing is generically inefficient when allocation is not the first best due to “AD externality”

— Monetary policy under DCP eliminates AD externality and equalizes private and social values of transfers
Assumption: focus on a case with no intermediates $\alpha = 0$ and equal inter/intra-temporal elasticities $\theta = \frac{1}{\sigma}$

- Use second-order approximations
Assumption: focus on a case with no intermediates $\alpha = 0$ and equal inter/intra-temporal elasticities $\theta = \frac{1}{\sigma}$

Use second-order approximations

Lemma

*Welfare loss function of the U.S.:

$$L^{US} \approx \frac{L}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \varphi \pi_{iit}^2 + \gamma \Psi \int \tilde{s}_{jt}^2 \, dj \right] + t.i.p.,$$

with output gap \tilde{y}_{it} and ToT gap \tilde{s}_{jt}.
U.S. Policy

- **Assumption**: focus on a case with no intermediates $\alpha = 0$ and equal inter/intra-temporal elasticities $\theta = \frac{1}{\sigma}$

- Use second-order approximations

Lemma

*Welfare loss function of the U.S.:

$$L^{US} \approx \frac{L}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \varphi \pi_{iit}^2 + \gamma \tilde{\psi} \int \tilde{s}_{jt}^2 \, dj \right] + t.i.p.,$$

with output gap \tilde{y}_{it} and ToT gap \tilde{s}_{jt}.

Proposition

The optimal policy in the U.S. deviates from price stabilization by responding less to domestic shocks and targeting the global ToT gap.
Gains from DCP

Welfare loss function of the U.S.:

\[L^{US} \approx \frac{L}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \varphi \pi_{iit}^2 + \gamma \Psi \int \tilde{s}_{jt}^2 \, dj \right] \]
Gains from DCP

- Welfare loss function of the U.S.:

\[\mathcal{L}^{US} \approx \frac{L}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \varphi \pi_{iit}^2 + \gamma \tilde{\Psi} \int \tilde{s}_{jt}^2 \, dj \right] \]

- Welfare loss function of a non-U.S. country:

\[\mathcal{L}^{RW} \approx \frac{L}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \varphi \pi_{iit}^2 + \gamma \tilde{\Psi} \int \tilde{s}_{jt}^2 \, dj \right] \]
Gains from DCP

- Welfare loss function of the U.S.:

\[L^{US} \approx \frac{L}{2} E \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \phi \pi_{iit}^2 + \gamma \tilde{\Psi} \int \tilde{\xi}_{jt}^2 \, dj \right] \]

- Welfare loss function of a non-U.S. country:

\[L^{RW} \approx \frac{L}{2} E \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \gamma \Gamma \tilde{\phi}_{it}^2 + \varphi \left[(1 - \gamma) \pi_{iit}^2 + \gamma \pi_{it}^2 \right] + \gamma \tilde{\Psi} \int \tilde{\xi}_{jt}^2 \, dj \right] \]

with law-of-one-price gap \(\tilde{\phi}_{it} \equiv p_{it}^* + e_{it} - p_{iit} \)
Gains from DCP

- Welfare loss function of the U.S.:
 \[
 \mathcal{L}^{US} \approx \frac{L}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \phi \pi_{iit}^2 + \gamma \tilde{\Psi} \int \tilde{s}_{jt}^2 \, dj \right]
 \]

- Welfare loss function of a non-U.S. country:
 \[
 \mathcal{L}^{RW} \approx \frac{L}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \gamma \tilde{\Gamma} \tilde{\phi}_{it}^2 + \phi [(1 - \gamma) \pi_{iit}^2 + \gamma \pi_{iit}^*]^2 + \gamma \tilde{\Psi} \int \tilde{s}_{jt}^2 \, dj \right]
 \]

with law-of-one-price gap \(\tilde{\phi}_{it} \equiv p_{iit}^* + e_{it} - p_{iit} \)

Proposition

The welfare of the U.S. relative to other countries under DCP is higher if all countries stabilize domestic prices.

1. **is higher if all countries stabilize domestic prices,**
Gains from DCP

Welfare loss function of the U.S.:

\[L^{US} \approx \frac{L}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \varphi \pi_{iit}^2 + \gamma \Psi \int s_{jt}^2 d\tilde{j} \right] \]

Welfare loss function of a non-U.S. country:

\[L^{RW} \approx \frac{L}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \gamma \tilde{\phi}_{it}^2 + \varphi \left[(1 - \gamma) \pi_{iit}^2 + \gamma \pi_{iit}^* \right] + \gamma \Psi \int s_{jt}^2 d\tilde{j} \right] \]

with law-of-one-price gap \(\tilde{\phi}_{it} \equiv p_{it}^* + e_{it} - p_{iit} \)

Proposition

The welfare of the U.S. relative to other countries under DCP is higher if all countries stabilize domestic prices,
Gains from DCP

- Welfare loss function of the U.S.:

\[
L^{US} \approx \frac{L}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \varphi \tilde{\pi}_{itt}^2 + \gamma \psi \int s_{jt}^2 \, dj \right]
\]

- Welfare loss function of a non-U.S. country:

\[
L^{RW} \approx \frac{L}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \gamma \tilde{\phi}_{it}^2 + \varphi \left((1 - \gamma) \pi_{iit}^2 + \gamma \pi_{it}^2 \right) + \gamma \psi \int s_{jt}^2 \, dj \right]
\]

with law-of-one-price gap \(\tilde{\phi}_{it} \equiv p_{it}^* + e_{it} - p_{iit} \)

Proposition

The welfare of the U.S. relative to other countries under DCP

1. is higher if all countries stabilize domestic prices,
Gains from DCP

- Welfare loss function of the U.S.:

\[\mathcal{L}^{US} \approx \frac{L}{2} E \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \varphi \pi_{iit}^2 + \gamma \bar{\Psi} \int \tilde{s}_{jt}^2 dj \right] \]

- Welfare loss function of a non-U.S. country:

\[\mathcal{L}^{RW} \approx \frac{L}{2} E \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \gamma \bar{\Gamma} \tilde{\phi}_{it}^2 + \varphi \left[(1 - \gamma) \pi_{iit}^2 + \gamma \pi_{iit}^{*2} \right] + \gamma \bar{\Psi} \int \tilde{s}_{jt}^2 dj \right] \]

with law-of-one-price gap \(\tilde{\phi}_{it} \equiv p_{iit}^* + e_{it} - p_{iit} \)

Proposition

The welfare of the U.S. relative to other countries under DCP

1. is higher if all countries stabilize domestic prices,
2. can be higher or lower under the optimal policy.
Gains from DCP

- Welfare loss function of the U.S.:

\[
L^{US} \approx \frac{L}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \varphi \pi_{iit}^2 + \gamma \bar{\Psi} \int \tilde{\xi}_{jt}^2 \, dj \right]
\]

- Welfare loss function of a non-U.S. country:

\[
L^{RW} \approx \frac{L}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \gamma \bar{\Gamma} \tilde{\phi}_{it}^2 + \varphi \left[(1 - \gamma) \pi_{iit}^2 + \gamma \pi_{iit}^{*2} \right] + \gamma \bar{\Psi} \int \tilde{\xi}_{jt}^2 \, dj \right]
\]

with law-of-one-price gap \(\tilde{\phi}_{it} \equiv p_{it}^* + e_{it} - p_{iit} \)

Proposition

The welfare of the U.S. relative to other countries under DCP

1. is higher if all countries stabilize domestic prices,
2. can be higher or lower under the optimal policy.

— the U.S. is likely to gain from DCP when openness \(\gamma \) is small
Gains from DCP

- Welfare loss function of the U.S.:
 \[
 \mathcal{L}^{US} \approx \frac{L}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \varphi \pi_{iit}^2 + \gamma \bar{\Psi} \int \tilde{s}_{jt}^2 dj \right]
 \]

- Welfare loss function of a non-U.S. country:
 \[
 \mathcal{L}^{RW} \approx \frac{L}{2} \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left[\sigma \tilde{y}_{it}^2 + \gamma \bar{\Gamma} \tilde{\phi}_{it}^2 + \varphi \left[(1 - \gamma) \pi_{iit}^2 + \gamma \pi_{iit}^* \right] + \gamma \bar{\Psi} \int \tilde{s}_{jt}^2 dj \right]
 \]
 with law-of-one-price gap \(\tilde{\phi}_{it} \equiv p_{it}^* + e_{it} - p_{iit} \)

Proposition

The welfare of the U.S. relative to other countries under DCP

1. is higher if all countries stabilize domestic prices,
2. can be higher or lower under the optimal policy.

- the U.S. is likely to gain from DCP when openness \(\gamma \) is small
- cooperative policy: \(MC_{it} = 1, \ \forall i \neq \text{U.S.}, \int MC_{it} / \mathcal{E}_{it} \ di = 1 \)
Optimal currency area:
- loss of independent monetary policy
+ commitment against inflationary bias
Optimal currency area:
 - loss of independent monetary policy
 + commitment against inflationary bias

Are there gains from promoting a common currency (euro)?
 — other countries are likely to use currency of a larger monetary union: Rey (2001), Gopinath & Stein (2018), Mukhin (2018), etc.
Optimal currency area:

- loss of independent monetary policy
- commitment against inflationary bias

Are there gains from promoting a common currency (euro)?

- other countries are likely to use currency of a larger monetary union: Rey (2001), Gopinath & Stein (2018), Mukhin (2018), etc.
- the euro is *not* a global currency
- yet, it dominates in bilateral trade between the Eurozone and the RoW
Optimal currency area:
- loss of independent monetary policy
+ commitment against inflationary bias

Are there gains from promoting a common currency (euro)?
- other countries are likely to use currency of a larger monetary union: Rey (2001), Gopinath & Stein (2018), Mukhin (2018), etc.
- the euro is \textit{not} a global currency
- yet, it dominates in bilateral trade between the Eurozone and the RoW

\textbf{Proposition}
\begin{quote}
\textit{Under }\alpha = 0 \textit{ and } \theta = \frac{1}{\sigma}, \textit{Eurozone problem is isomorphic to the problem of the U.S. and achieves the same welfare under the optimal policy.}
\end{quote}
Conclusion

1. Does U.S. monetary policy generate negative spillovers on the RoW? If so, should the Fed be concerned about it?

2. What is the optimal response of other countries float vs. peg?

3. Can capital controls help?

4. Are there gains from international cooperation?

5. Is there an “exorbitant privilege” from DCP for the U.S.?

6. Are there gains from a currency union (Eurozone)?
Conclusion

1. Does U.S. monetary policy generate negative spillovers on the RoW? If so, should the Fed be concerned about it?
 — yes & yes

2. What is the optimal response of other countries float vs. peg?
 — partial peg

3. Can capital controls help?
 — not much

4. Are there gains from international cooperation?
 — not for the U.S.

5. Is there an “exorbitant privilege” from DCP for the U.S.?
 — yes

6. Are there gains from a currency union (Eurozone)?
 — yes
APPENDIX
Pass-through to Border and Retail Prices

Source: Auer, Burstein, and Lein (2018)
Pass-through to Border and Retail Prices

Source: Auer, Burstein, and Lein (2018)
DCP in Imports

Source: Gopinath (2016)
Dollar as an Anchor Currency

Source: Ilzetzki, Reinhart and Rogoff (2017)
DCP vs. Response to Fed’s Shocks

Source: Zhang (2018)