Interest Rate Uncertainty as a Policy Tool

F. Ghironi & G. K. Ozhan

*Discussion by Javier García-Cicco
Central Bank of Argentina*

IMF-CBC-IMFER Conference on
Current Policy Challenges Facing Emerging Markets
July 24-25, 2019 - Santiago, Chile

The views expressed are those of the author and do not necessarily represent official positions of the Central Bank of Argentina or its Board members.
What are the macro effects of widening the O/N rate corridor?
This paper:

- **Wider Corridor** → **Higher Interest Rate Uncertainty** → **Macro Effects of IR Uncertainty**

Main channels:
- Precautionary savings.
- Precautionary inflation.
- FDI effect (new).
Review of the Paper

This paper:

- Wider Corridor
- Higher Interest Rate Uncertainty
- Macro Effects of IR Uncertainty

Main channels:
- Precautionary savings.
- Precautionary inflation.
- FDI effect (new).

My comments: Insightful first approach to the question.
- The effects of domestic interest rate volatility.
- It’s use as a policy tool.
The effects of domestic IR Volatility

- Contribution to the expanding literature on the effect of volatility shocks.
- From a SOE perspective, the FDI effect is novel and potentially relevant.
The effects of domestic IR Volatility

- Contribution to the expanding literature on the effect of volatility shocks.
- From a SOE perspective, the FDI effect is novel and potentially relevant.
- The volatility process:
 - Model time period?
 - Justifying the calibration.
 - Size of the volatility shock (2 sd) and calibrated persistence: What is the mapping with the policy implemented in Turkey?
 - Non-linearities and different shock sizes.
The effects of domestic IR Volatility

- Contribution to the expanding literature on the effect of volatility shocks.
- From a SOE perspective, the FDI effect is novel and potentially relevant.
- The volatility process:
 - Model time period?
 - Justifying the calibration.
 - Size of the volatility shock (2 sd) and calibrated persistence: What is the mapping with the policy implemented in Turkey?
 - Non-linearities and different shock sizes.
- FDI and investment:
 - Lack of inv. adj. costs may overemphasize this channel.
 - Time-to-build in both types of investment.
The effects of domestic IR Volatility

- Contribution to the expanding literature on the effect of volatility shocks.
- From a SOE perspective, the FDI effect is novel and potentially relevant.
- The volatility process:
 - Model time period?
 - Justifying the calibration.
 - Size of the volatility shock (2 sd) and calibrated persistence: What is the mapping with the policy implemented in Turkey?
 - Non-linearities and different shock sizes.
- FDI and investment:
 - Lack of inv. adj. costs may overemphasize this channel.
 - Time-to-build in both types of investment.
- Role of countercyclical markups.
 - Basu and Bundick (EMA, 2017), Seoane (IER, 2017).
Whether it is a useful/desirable policy tool is less clear.
Whether it is a useful/desirable policy tool is less clear.

What is the problem to be solved?
- Policy discussions: “excessive” capital flows.
- Does the model generate inefficient capital flows?
- Pecuniary externality / over-borrowing? e.g. Bianchi (AER, 2011).
- Sticky prices and aggregate demand externality? Fahri and Werning (EMA, 2016).
Whether it is a useful/desirable policy tool is less clear.

What is the problem to be solved?
- Policy discussions: “excessive” capital flows.
- Does the model generate inefficient capital flows?
- Pecuniary externality / over-borrowing? e.g. Bianchi (AER, 2011).
- Sticky prices and aggregate demand externality? Fahri and Werning (EMA, 2016).

Welfare analysis I:
- How does welfare change in the presence of this shocks?
- Traditional reasoning without inefficiencies: more volatility ⇒ less welfare.
- With rigidities/frictions it depends on the model.
Welfare analysis II:

- The policy design exercise may require a model where the interbank market is explicitly included.
- In such a framework, policy rate ≠ market rate.
Welfare analysis II:

- The policy design exercise may require a model where the interbank market is explicitly included.
- In such a framework, policy rate \neq market rate.

How this policy compares to other alternatives?
Welfare analysis II:

- The policy design exercise may require a model where the interbank market is explicitly included.
- In such a framework, policy rate \neq market rate.

How this policy compares to other alternatives?

Why is FDI a relevant part of the problem to be solved?

- Many times politicians argue that “speculative capital inflows” crowd-out FDI, and use it as an argument to implement policies.
- The paper shows that more IR volatility may not help in this front.
Welfare analysis II:

- The policy design exercise may require a model where the interbank market is explicitly included.
- In such a framework, policy rate \neq market rate.

How this policy compares to other alternatives?

Why is FDI a relevant part of the problem to be solved?

- Many times politicians argue that “speculative capital inflows” crowd-out FDI, and use it as an argument to implement policies.
- The paper shows that more IR volatility may not help in this front.

Is the problem to be solved generated by inconsistencies in the policy framework?
IR Volatility as a policy tool

▶ Welfare analysis II:
 ▶ The policy design exercise may require a model where the interbank market is explicitly included.
 ▶ In such a framework, policy rate ≠ market rate.

▶ How this policy compares to other alternatives?
▶ Why is FDI a relevant part of the problem to be solved?
 ▶ Many times politicians argue that “speculative capital inflows” crowd-out FDI, and use it as an argument to implement policies.
 ▶ The paper shows that more IR volatility may not help in this front.

▶ Is the problem to be solved generated by inconsistencies in the policy framework?
▶ Some related examples:
 ▶ Argentina 2018.
 ▶ Uruguay 2013.
A way of thinking about this policy in a DSGE model.

Let R_t be the policy rate and M_t the quantity in the market where policy operates (e.g. the amount traded in the interbank market).

Let $R^T_t|_{t-1}$ be the desired rate (e.g. Taylor rule), and $M^T_t|_{t-1}$ the quantity consistent with $R^T_t|_{t-1}$.

Ex-post these might differ due to shocks.

Alternative regimes:

- IT: $R_t = R^T_t|_{t-1}$, and M_t might differ from $M^T_t|_{t-1}$.
- Quantity target: $M_t = M^T_t|_{t-1}$, and R_t might differ from $R^T_t|_{t-1}$.
- Hybrid regime: Use the rule
 \[
 \lambda(R_t - R^T_t|_{t-1}) = (1 - \lambda)(M_t - M^T_t|_{t-1}),
 \]
 \(\lambda \in [0, 1]\).
 Widening the corridor is analogous to decreasing λ.

This is related to the work by Berg et al. (IMF, 2010).
IR Volatility as a policy tool

- A way of thinking about this policy in a DSGE model.
- Let R_t be the policy rate and M_t the quantity in the market where policy operates (e.g. the amount traded in the interbank market).
- Let $R_{t|t-1}^T$ be the desired rate (e.g. Taylor rule), and $M_{t|t-1}^T$ the quantity consistent with $R_{t|t-1}^T$.
- Ex-post these might differ due to shocks.
- Alternative regimes:
 - IT: $R_t = R_{t|t-1}^T$, and M_t might differ from $M_{t|t-1}^T$.
 - Quantity target: $M_t = M_{t|t-1}^T$, and R_t might differ from $R_{t|t-1}^T$.
 - Hybrid regime: Use the rule
 \[\lambda(R_t - R_{t|t-1}^T) = (1 - \lambda)(M_t - M_{t|t-1}^T), \quad \lambda \in [0, 1] \]
 - Widening the corridor is analogous to decreasing λ.
- This is related to the work by Berg et al. (IMF, 2010).