

Signaling through Carbon Disclosure

Patrick Bolton (Columbia University & Imperial College) Marcin Kacperczyk (Imperial College)

4th IMF Macro-Financial Research Conference September 29-30, 2021

Motivation

- Transition risk is dilated by limited observation of firm-level carbon emissions
- Carbon disclosure is a way of reducing uncertainty about emissions
 Voluntary disclosure: a way of signaling firm type/impact on society
 Mandatory disclosure: a way of reducing uncertainty
- A significant policy push towards more disclosure (TCFD, NDC)
- SEC Chair Gary Gensler speech 28 July 2021
- <u>This paper</u>: A global study of the stock return consequences of firmlevel carbon emissions disclosure

This Paper

- We take a global investor perspective on the emissions disclosure using a large panel of over 14,400 firms from 77 countries over the 2005-18 period
- Main Questions:
- Does voluntary disclosure matter for stock returns?
- Can we identify the mechanism through which disclosure works?
 - > What are the key drivers of voluntary disclosure?
 - Do we observe systematic differences in the effects of voluntary vs. mandatory disclosure?

Data: Sources

- Our primary database covers the period 2005-2018 and is largely a result of matching two data sets by Trucost and FactSet
 - Trucost: information on firm-level corporate carbon and other greenhouse gas emissions globally (follows the Greenhouse Gas Protocol that sets the standards for measuring corporate emissions)
 - Provides information on whether emissions (scope 1 and scope 2) are directly disclosed by the firm or estimated by Trucost
 - Scope 1 and 2 are fairly easy to estimate (little variation across data providers)
 - FactSet provides data on stock returns, corporate fundamentals, and institutional ownership globally
- The matching produced 14,468 unique companies out of approx. 16,000 companies available in Trucost (about 99% of total market cap)
- Representing 77 countries and spanning all industries

Data: Sources

- Our primary database covers the period 2005-2018 and is largely a result of matching two data sets by Trucost and FactSet
 - Trucost: information on firm-level corporate carbon and other greenhouse gas emissions globally (follows the Greenhouse Gas Protocol that sets the standards for measuring corporate emissions)
 - Provides information on whether emissions (scope 1 and scope 2) are directly disclosed by the firm or estimated by Trucost
 - Scope 1 and 2 are fairly easy to estimate (little variation across data providers)
 - FactSet provides data on stock returns, corporate fundamentals, and institutional ownership globally
- The matching produced 14,468 unique companies out of approx. 16,000 companies available in Trucost (about 99% of total market cap)
- Representing 77 countries and spanning all industries

Disclosure Frequency: Time-Series Variation

Date	Reported	Estimated	%Reported
2005	217	2,993	7.25%
2006	300	3,202	9.37%
2007	444	3,216	13.81%
2008	474	3,235	14.65%
2009	541	3,381	16.00%
2010	779	3,273	23.80%
2011	975	3,208	30.39%
2012	1,048	3,179	32.97%
2013	1,139	3,739	30.46%
2014	1,345	3,940	34.14%
2015	1,281	4,102	31.23%
2016	1,625	10,205	15.92%
2017	1,714	10,907	15.71%
2018	1,346	8,446	15.94%

Empirical Challenges in the ESG Literature

- Challenge to separate the effect of the **activity** from the effect of **disclosure of the activity**
 - The decision to disclose may be correlated with the decision to engage in the activity (we usually do not observe pre-disclosure values)
 - > The activity itself may be subject to manipulation (moral hazard)
- CSR activities are difficult to measure and quantify
 - In contrast, carbon emissions are relatively straightforward to measure (scope 1 and scope 2)

Disclosure and Carbon Premia

- Carbon emissions and disclosure decisions are observed on an annual basis
- Disclosure = 1 if a firm discloses its scope 1/scope2 emissions;
 = 0 if the information is estimated
- Intensive margin is important: need to control for carbon emissions
- We consider two different measures of emissions across scope 1 & 2:
 - Firm-level total emissions (in logs of tons of CO2): long-term effect
 - Percentage changes in firm-level emissions: short-term effect

Disclosure and Carbon Premia

- We estimate the pooled (panel) data return regressions with:
 - > monthly stock returns as a dependent variable
 - interaction between disclosure and emissions as the main variable
 - various firm-level characteristics as controls
- We include year-month, country, industry, and firm fixed effects
- We double cluster standard errors at firm and year dimensions
- Coefficient identifies the value effect due to disclosure

Estimating Carbon Premia (Changes)

VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)
Scope1chg	0.618***		0.633***		0.717***	
	(0.132)		(0.130)		(0.120)	
Scope2chg		0.445***		0.451***		0.512***
		(0.100)		(0.102)		(0.101)
Disclosure	0.196***	0.212***	0.182***	0.197***	0.181**	0.203**
	(0.055)	(0.058)	(0.050)	(0.053)	(0.076)	(0.080)
Disclosure*Scope1chg	-0.563***		-0.545***		-0.552***	
	(0.132)		(0.122)		(0.101)	
Disclosure*Scope2chg		-0.490***		-0.481***		-0.487***
		(0.111)		(0.104)		(0.092)
Industry Fixed Effects	N	Ν	Y	Y	Y	Y
Firm*Discl. Fixed Effects	Ν	Ν	Ν	N	Y	Y

Voluntary vs. Mandatory Disclosure

- What is the mechanism guiding voluntary disclosure results?
 - Uncertainty reduction
 - Adverse selection/Signaling
- In October 2013, Britain imposed mandatory disclosure for publicly listed companies
- Use a one-year window around the rule to assess the difference between voluntary and mandatory disclosure
- **Triple-difference regression** with: GBshock =1 for period 2013/11-2014/10 and GBshock = 0 for 2012/11-2013/10
- Treatment = 0 (1) are firms that did (not) disclose prior to the shock
- Controls are set at the pre-period levels (robust for time-varying ones)

First Stage

VARIABLES (Disclosure)	(1)	(2)	(3)
Pre disclosure = 70%			
GBshock	0.189***	0.193***	0.189***
	(0.040)	(0.041)	(0.043)
Industry fixed effects	Ν	Y	Y
Firm fixed effects	Ν	Ν	Y
Observations	4,951	4,951	4,951
R-squared	0.081	0.298	0.477

2nd Stage

	(1)	(2)	(2)	(4)
	(1)	(2)	(3)	(4)
VARIABLES	ret_agg	ret_agg	ret_agg	ret_agg
Ln(scope1)	0.104	-0.007		
	(0.120)	(0.425)		
Scope1chg			0.062	0.069
			(0.185)	(0.130)
Treatment	0.846		-0.101	
	(0.787)		(0.359)	
Treatment*Ln(scope1)	-0.106	0.333		
	(0.086)	(0.404)		
Treatment*Scope1chg			-0.384	-0.688
1 0			(0.591)	(0.492)
GBshock*Ln(scope1)	-0.087	-0.109	· · /	· · · ·
	(0.116)	(0.121)		
GBshock*Scope1chg	(00000)	(0.12-1)	-0.642	-0.861*
			(0.452)	(0.420)
Treatment*GBshock	-2.952**	-2.935**	-0.800	-0.770
	(1.322)	(1.386)	(0.568)	(0.509)
Treatment*GBshock*Ln(scope1)	0.234*	0.245*	(01000)	(0.00)
Treatment absnock En(scoper)	(0.140)	(0.138)		
Treatment*GBshock*Scope1chg	(0.170)	(0.130)	1.288*	1.313
reatment Obshock scopereng				
freutilient absnock scopereng			(0.757)	(0.888
			(0.757)	(0.888)

13

Spillover Effects

• Does disclosure in one market spill over into other markets?

First Stage: Spillover Effects

Panel A: Disclosure Effects								
Variable (Disclosure)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
				Europe	EU	Non-EU	North	
	Full	Sample (ex.	UK)	(ex. UK)	(ex. UK)	\frown	America	Asia
<u>GBshock</u>	0.030***	0.029***	0.030***	0.057***	0.050***	0.086***	0.026**	0.020***
	(0.005)	(0.005)	(0.006)	(0.015)	(0.015)	(0.030)	(0.009)	(0.006)
Log(scope1)	0.003	-0.018***	0.029**	-0.052	-0.028	-0.180***	-0.035	0.043*
	(0.003)	(0.005)	(0.012)	(0.036)	(0.037)	(0.040)	(0.022)	(0.021)
Controls	Y	Y	Y	Y	Y	Y	Y	Y
Industry Fixed Effects	Ν	Y	Y	Y	Y	Y	Y	Y
Firm Fixed Effects	Ν	N	Y	Y	Y	Y	Y	Y
Observations	85,271	85,271	85,271	13,775	11,559	2,216	23,637	37,274
R-squared	0.229	0.305	0.857	0.854	0.852	0.868	0.850	0.867

2nd Stage: Spillover Effects (Europe)

	Panel B12:	Carbon Prem	ium Effects	(Europe cro	oss-section)			
Variable (Return)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	EU (ex. UK)					Non-	EU	
Log(scope1)	0.067	0.658*			0.259	0.021		
	(0.101)	(0.376)			(0.273)	(0.455)		
Scope1chg			0.384	0.410			1.278*	1.897**
			(0.301)	(0.464)			(0.681)	(0.703)
Treatment	1.013	0.000	0.078	0.000	0.875	0.000	0.500	0.000
	(0.668)	(0.000)	(0.277)	(0.000)	(0.740)	(0.000)	(0.420)	(0.000)
Treatment*Log(scope1)	-0.103	1.496			-0.030	2.275		
	(0.064)	(1.261)			(0.065)	(2.685)		
Treatment*Scope1chg			0.357	0.644			-1.383	-3.583
			(0.808)	(1.171)			(1.256)	(2.483)
GBshock*Log(scope1)	0.096	0.046			-0.628*	-0.564*		
	(0.153)	(0.152)			(0.336)	(0.329)		
GBshock*Scope1chg			-0.042	-0.224			-1.926	-3.065**
			(0.498)	(0.650)		\frown	(1.658)	(1.392)
Treatment*GBshock	-2.898*	-3.135**	-0.610	-0.615	-2.480	-4.075**	-0.530	-0.359
	(1.477)	(1.473)	(0.509)	(0.512)	(1.883)	(1.916)	(0.849)	(0.845)
Treatment*GBshock*Log(scope1)	0.247*	0.265*			0.186	0.368*		
	(0.134)	(0.136)			(0.196)	(0.202)		
Treatment*GBshock*Scope1chg			0.459	0.032			3.265	5.913
			(1.251)	(1.424)			(3.040)	(3.768)
Controls	Y	Y	Y	Y	Y	Υ	Y	Y
Firm Fixed Effects	Ν	Y	Ν	Y	N	Y	Ν	Y
Observations	9,378	9,378	9,368	9,368	1,262	1,262	1,262	1,262
R-squared	0.494	0.513	0.494	0.512	0.592	0.604	0.590	0.602

2nd Stage: Spillover Effects (North America)

Variable (Return)	(1)	(2)	(3)	(4)
Log(scope1)	0.032	-0.383		
	(0.076)	(0.237)		
Scope1chg			-0.130	-0.272
			(0.349)	(0.468)
Treatment	-0.393		0.109	. ,
	(0.788)		(0.150)	
Treatment*Log(scope1)	0.046	0.604		
	(0.066)	(0.650)		
Treatment*Scope1chg			0.250	0.680
			(0.752)	(0.601)
GBshock*Log(scope1)	-0.005	0.045		
	(0.112)	(0.133)		
GBshock*Scope1chg			-0.042	-0.090
1			(0.480)	(0.538)
Treatment*GBshock	0.233	0.747	-0.369	-0.391
	(1.039)	(1.075)	(0.282)	(0.303)
Treatment* <u>GBshock</u> *Log(scope1)	-0.053	-0.102	``	
	(0.087)	(0.089)		
Treatment*GBshock*Scope1chg		· · ·	0.431	0.199
1 0			(1.018)	(0.882)
Controls	Y	Y	Y	Y
Firm Fixed Effects	Ν	Y	Ν	Y
Observations	20,992	20,992	20,982	20,982
R-squared	0.433	0.454	0.433	0.454

Disclosure and Peer Pressure

- Does the company's peer pressure affect disclosure?
 - Focus on fraction of firms within the same industry that already disclose
 - > Estimate the **hazard model** with "Peer" as a main variable

Disclosure and Peer Pressure

VARIABLES		Discl		
Peer	4.358***	4.039***	6.739***	7.049***
	-0.15	-0.213	-0.289	-0.413
Ln(scope1)	-0.063**	-0.054**	-0.206***	-0.240***
	-0.027	-0.024	-0.027	-0.037
Scope1chg	-0.107	-0.194	-0.029	-0.034
	-0.123	-0.185	-0.116	-0.157
Scope1int	0.01	0.015	0.042***	0.047***
	-0.008	-0.009	-0.011	-0.014
environmental_pillar		0.103***		0.112***
		-0.016		-0.016
social_pillar		0.038**		0.056***
		-0.018		-0.019
governance_pillar		0.076***		0.062***
		-0.018		-0.018
Industry F.E.	Ν	Ν	Y	Y

Conclusions

- Disclosure of carbon emissions informs the pricing of transition risk
- It is a relatively easy tool to implement, which has gathered interest from regulators and corporate world
- Evidence of the value benefit coming from voluntary disclosure
- Results from the natural experiment suggest that voluntary disclosure reduces adverse selection component of information
- Disclosure effects spill over to firms in most-related economies

Do Firms Adjust their Emissions to Disclosure?

- The CSR research suggests that firms may disclose information and at the same time alter their ESG activities (moral hazard?)
- This process is less likely for carbon emissions because they are more difficult to manipulate
- Event study analysis for firms beginning to disclose their data
- We observe imputed values before the disclosure => can evaluate the moral hazard story
- DC is an indicator variable equal to one for the year of disclosure change (zero for the year before)